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ABSTRACT

This research concerns the development of cooperative control of two spacecraft

mounted two-link manipulators as they reposition a common payload. Lagrangian formu-

lation is used to determine the system equations of motion. Lyapunov stability theory is

used to develop the cooperative control by using a reference trajectory and reference actu-

ator torques. Polynomial curves represent potential reference trajectories. Numerical

methods select specific reference trajectories to minimize the disturbance torque transmit-

ted to the spacecraft during the payload repositioning maneuver. The reference actuator

torques are selected to minimize weighted norms of the torques. Analytical and experi-

mental models of planar motion are used to study the performance of different cooperative

controllers. The fifth order polynomial reference trajectory leads to superior performance

in terms of spacecraft attitude accuracy, actuator torque magnitude, payload repositioning

accuracy, and maneuver time. The higher order polynomial reference trajectory results in

only minor improvement in performance. The experimental results verify the concept of

cooperative control.
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I. INTRODUCTION

A. BACKGROUND AND LITERATURE SURVEY

Robots are presently an integral part of industrial processes. They perform tasks with

high precision, speed and reliability. These same features make robots attractive with

regards to space applications.

Space based robotics platforms experience conditions unlike those of their terrestrial

counterparts. With respect to the dynamics of the systems, the most notable difference is

the absence of a fixed base on which to locate the manipulators. The consequence of the

difference is that the motion of the space based manipulator transmits forces and moments

to its mounting base resulting in translation and rotation of the base itself. This of course

impacts the location of the manipulator's end effector. The problem is further complicated

in that the disturbances are not simply a function of the present manipulator joint angles

but are also a function of the joint angle histories preceding the current configuration.

(Ref. 1)

A number of approaches have been used for dealing with this coupling of joint angle

histories and spacecraft main body attitude. Wang (Ref. 2) eliminates the problem by

carefully defining what he expects of his dual-arm maneuverable space robot. He preposi-

tions the manipulators such that they are configured to grasp the payload once the vehicle

moves within range. After the manipulators are in position, their joints are locked while

the spacecraft maneuvers to a location and attitude near the payload. Next, the vehicle

approaches the payload in a straight line until the end effectors can grasp the payload.

While the manipulator joints remain locked, the vehicle repositions the entire rigid body

system to the desired payload destination. At this point, the payload is released and the



vehicle backs away along a straight line. The repositioning of the payload is accom-

plished by means of the vehicle attitude control rather than altering the joint angles in the

manipulators. The manipulators themselves are not moved except when the attitude dis-

turbance they impart to the vehicle is of no importance. Maintaining vehicle attitude dur-

ing manipulator motion is not a requirement.

Longman, Lindberg and Zedd (Ref. 3) calculate the disturbance torques caused by

manipulator motion. This information is used to calculate reaction wheel commands

which will compensate for the disturbance torques. In this way, spacecraft attitude control

is maintained while the manipulator is repositioned.

If the vehicle does not contain reaction wheels, the primary source of attitude control

is probably reaction control thrusters. Because fuel is consumable and hence mission lim-

iting, firing thrusters to hold spacecraft attitude should be avoided whenever possible.

Vafa and Dubowsky (Ref. 4) and Longman (Ref. 5) use similar approaches to eliminate

the need for reaction thruster firings. Both techniques involve constructing a manipulator

trajectory which involves revolving the manipulator in a small coning motion at interme-

diate stages of the payload repositioning maneuver. This motion imparts a slow rotation

of the spacecraft about the coning axis. Careful use of the coning locations permits repo-

sitioning of the payload between any arbitrary locations (within manipulator reach) and

attitudes while a!so changing the spacecraft to any desired attitude without the need for

thruster firings. This technique does not, however, maintain a particular spacecraft atti-

tude during the maneuver.

Nakamura and Mukherjee (Ref 6) use a technique called the bi-directional approach.

This method represents a six degree of freedom (DOF) manipulator mounted on a space

vehicle as a nine variable system (six joint angles and three spacecraft attitude angles)

with six inputs (the manipulator joint torques). They attack the problem from both ends

by integrating forward from the initial conditions and backwards from the desired final

2



conditions. A Lyapunov function guarantees that the two solutions will converge at some

intermediate time during the maneuver. As in Ref 4 and Ref. 5, the payload is reposi-

tioned to the desired location and attitude and the attitude of the spacecraft main body is

changed to its desired orientation. However, the main body attitude during the maneuver

is not controlled. Furthermore, the joint angle trajectories calculated by this method con-

tain rapid, large oscillations near the maneuver start and stop times and noncontinuous

derivatives at the convergence time.

Vafa (Ref. 7) succeeds in using a single space-based manipulator to control spacecraft

attitude during a repositioning maneuver. He does this by employing a nine DOF manipu-

lator. This manipulator has enough redundancy in its kinematics to control the end effe,-

tor location and attitude and the spacecraft attitude. Six DOF are allocated to

repositioning the payload and the remaining three DOF are used to control the spacecraft

attitude.

Like Ref. 7, the primary objective of Chung, Desa and deSilva (Ref, 8) is to address

the disturbances transmitted to the spacecraft by the manipulator motion. They also use a

single manipulator with redundant kinematics. Because they use inverse kinematics to

find the joint torques, the manipulator redundancy prevents the existence of a unique solu-

tion. A solution is selected from among the infinity of possible solutions by means of

minimizing a cost function of the magnitudes of the forces and torques transmitted to the

base.

Torres and Dubowsky (Ref. 9) also focus on the spacecraft attitude disturbances

caused by manipulator motion. They recognize that for any given point in joint space,

there is a direction of motion which produces minimum spacecraft attitude disturbance

and a perpendicular direction of motion which produces maximum spacecraft attitude dis-

turbance. A tool called the enhanced disturbance map (EDM) depicts these directions

graphically. The EDM permits users to plan manipulator trajectories that lie on or near

3



zero disturbance paths. For non redundant manipulators, this may involve repositioning

the spacecraft itself prior to the manipulator repositioning maneuver. If the manipulator

has redundant kinematics, one can find a zero disturbance path to connect the manipulator

trajectory endpoints without having to reposition the spacecraft initially. This technique

considers only the location of the manipulator endpoint and not its attitude.

Configurations with multiple manipulators have also been explored. The closed chain

nature of these configurations prevent the use of some of the techniques already discussed.

In addition, controlling multiple manipulators raises the issue of cooperation between the

manipulators.

Nguyen, Pooran and Premack (Ref. 10) develop a PD controller for a fixed base, two

DOF. closed chain manipulator system. The system is linearized by means of Taylor

series expansion about a point designated as the robot's "home" point. Pole placement is

then used to select controller gains.

Hu and Goldenberg (Ref. 11) derive an adaptive control scheme for multiple nonre-

dundant manipulators mounted to a fixed base. In this reference, coordinated control

involves controlling the motion of the grasped object, the contact forces between the

object and its environment, and the internal forces within the object caused from being

held by more than one manipulator.

For a space based system, contact forces between the payload and its environment are

less likely to be important. Walker, Kim and Dionise (Ref. 12) present just such an adap-

tive controller.

Coordinated control of multiple manipulators assumes a different meaning according

to Yoshida, Kurazume and Umetani (Ref. 13). Although they propose a system with two

manipulators, only one actually grasps the payload. The other is used to provide counter-

balancing torques to the spacecraft main body. The role of the second manipulator is sim-

4



ilar to a reaction wheel in that its primary function is to control spacecraft attitude rather

than reposition a payload.

Ahmad and Zribi (Ref. 14) apply a Lyapunov controller to a fixed base, multiple

manipulator system. As in Ref. 12, they are concerned with controlling the payload posi-

tion and its internal forces. To do so, the method requires sensors to measure the forces

and moments created by each manipulator. They also present an adaptive version to con-

trol this system.

While still addressing payload position and internal forces, Schneider and Cannon

(Ref. 15) use a technique called object impedance control to achieve coordinated control

among the manipulators. This method views the payload as being anchored to a desired

location by a spring/damper system.

B. DISSERTATION OVERVIEW AND OBJECTIVES

This research is concerned with the cooperative control of a space based manipulator

system with multiple manipulators handling a common payload. The scope is limited to

planar motion in which the spacecraft is allowed to rotate but not to translate. These

restrictions permit experimental verification in the Spacecraft Dynamics and Control Lab-

oratory at the Naval Postgraduate School. The objectives of this research are to i) develop

a stable control law which facilitates cooperation among the manipulators as they reposi-

tion the payload, 2) minimize joint actuator effort, 3) reduce the disturbance torque trans-

mitted to the spacecraft main body by the manipulator motion, and 4) validate the

analytical development with experimental results.

Chapter II develops the analytical model in detail. Coordinate systems are defined and

the equations of motion are derived. A technique for finding control torques which mini-

mizes a weighted norm is presented. A globally stable control law is developed using

5



Lyapunov methods. The idea of using a reference trajectory to describe the motion is

applied as are methods for choosing the reference trajectory.

Chapter III verifies the analytical model with several test cases. The model is evalu-

ated for compliance with the principles of conservation of kinetic energy and angular

momentum. After establishing the validity of the model, results from simulations are pre-

sented. The stability of the controller is illustrated as is the dramatic improvement in per-

formance when a reference trajectory is included. Results from a simplified control law

which is more practical to implement are included and compared to the complete control

law version.

Discussion of the experimental work is contained in Chapter IV. This chapter includes

a description of the experimental setup. As might be expected, actual hardware demon-

strated that there are differences between the ideal world of the analytical model and the

real world of hardware implementation.

The summary and concluding remarks are presented in Chapter V. This chapter also

contains suggestions for titure work in this field.

6



II. ANALYTICAL MODEL

The analytical model represents a spacecraft with two manipulators attached. The

manipulators have already firmly grasped an object hereafter referred to as the payload.

The manipulators are about to reposition the payload with respect to the spacecraft. The

ensuing dynamics between the spacecraft, manipulators, and payload are the topic of this

research. What occurs before the manipulators grasp the payload and after they release it

is beyond the scope of this investigation. The scope is narrowed further by confining the

motion to be two dimensional and allowing the spacecraft to rotate but not translate.

These assumptions are consistent with hardware restrictions during experimental verifica-

tion.

A. COORDINATE SYSTEMS

Figure 1 shows a schematic of the overall system. This diagram illustrates the rela-

tionship between the coordinate frames used to develop the equations of motion. All

angles are measured positive counterclockwise. The centerbody, manipulator links, and

payload are assumed to be rigid bodies. Therefore, member lengths (ILI, IL2, IRI, IR2, and

1p), distances to member centers of mass (1co, tI, 1, 1c.2, cRI, 1,R2, and /el), and the loca-

tion of the left and right shoulders (ILO, 01,o, IR(o, and 0 R0) remain constant. An inertial

axis system is located on the centerbody at the point of rotation. A body fixed coordinate

frame uses the same origin as the inertial frame but rotates with the spacecraft centerbody.

The x-axis of this frame points to the centerbody center of mass. The centerbody attitude,

00 , is the angle between the inertial x-axis and the spacecraft centerbody x-axis. Each

manipulator link has its own set of body axes. A coordinate frame attached to the left

7
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shoulder aligns its x-axis along the longitudinal axis of manipulator Link L 1. Tile attitude

of this link, 0 1,1, is zero when the link lies on a ray extending from the inertial origin

through the left shoulder. The attitude of Link L2 is defined by a coordinate frame

attached to the left elbow. The attitude of this link, 012, is zero when the link is parallel

with the proceeding link, Link LI. Similar coordinate frames and definitions apply to the

right manipulator. The payload attitude, 01, is referenced to the inertial frame. The Carte-

sian coordinates of the payload center of mass are also with respect to the inertial frame.

A set of generalized coordinates which describe the system include the centerbody atti-

tude, joint angles for all of the manipulator links, and payload attitude and position.

q = _00 L 1 012 OR I 12 01 XI) (1)

Six joint actuators apply torques at the shoulder, elbow, and wrist of each manipulator.

A reaction wheel applies a torque to the centerbody. The actuators can be grouped into a

control vector

Y:" [Uwh ULS ULE ULW URS URE UWI (2)

where the first element is the reaction wheel torque. The remaining elements are joint

actuator torques. The first letter of their torque subscripts indicates left or right arm. The

second subscript indicates shoulder (S), elbow (E) or wrist (W).

B. EQUATIONS OF MOTION

The equations of motion for this system are developed using Lagrange's equations for

a dynamic system with holonomic constraints.

d (aL) _ L = Q+AT X (3)
dt _q (?q

subject to constraints

9



Aq + A O : 0 (4)

where L = T - V

T is kinetic energy

V is potential energy

q is the generalized coordinates vector

q is the generalized velocities vector

Q is the vector of applied nonconservative forces

A T Xare the constraint forces

Beginning with Lagrange's equation, the equations of motion can be rearranged into

an alternate form. The inertia matrix, M, is a function of the generalized coordinates.

Since the potential energy is a function of only the generalized coordinates, the partial of

the Lagrangian with respect to the generalized velocities does not contain any potential

energy terms.

- = Mq (5)

Differentiating Eq. (5) with respect to time leads to

d (,IL M 'rdM 'riMW

dt q -- = Mq+q -qq (6)

Replacing the Lagrangian with expressions for kinetic energy and potential energy

results in

aL I(0r Mq) (V (7)o9 2 q(?

Eq. (6) and Eq. (7) can be substituted back into Eq. (3) to produce

1 (41T 4M 'V .V

Mq+ . _ + . = Q+ArX (8)

10



The second term on the left-hand side of Eq. (8) contains the centripetal and Coriolis

torques. Replacing this with the G matrix leads to
(V

Mq + G(q, q) + = Q+A ?1 (9)eq

After substituting the matrix form of the generalized forces into the equations of

motion, one has

Mq+G+ < Bu+A k (10)

The following sections develop expressions for the inertia matrix, Coriolis and cen-

tnpetal accelerations, generalized forces, and constraints imposed by the closed chain

geometry of the system.

I. Inertia Matrix, M

The inertia matrix is found by calculating die system kinetic energy and expressing

it in the form

T = 2q IM (q)jq il
2

The inertia matrix is the term bracketed by the generalized velocity vectors. The

total system kinetic energy is the sum of the kinetic energy of all the pieces.

T = TO+TLI +TL2 +TIZ +T R2 +T1, (12)

Kinetic energy of individual components can be found from

T = I.0+ -m.(r. r) (13)T 2t 1 2 1

Ii is the member moment of inertia about its center of mass

coi is the angular velocity

mi is the mass

f is the inertial velocity of the center of mass

11



The centerbody angular rate and center of mass position vector are given by

, =(14)

r , = , , (15)

Differentiating Eq. (15) results in the velocity of the centerbody center of mass

r I = (16)

Substituting Eq. (14) and Eq. (16) back into the expression for kinetic energy (Eq.

(13)) and collecting on the angular rate term leads to

rll, I + l -, (17 )

Similar developments are used for each of the remaining pieces in the system. For

the left manipulator link between the shoulder and elbow (Link L I ), the angular velocity is

a combination of centerbody rotation and rotation of the link with respect to the center-

body.

1.1 +On (18)

The position vector to the center of mass is

rL = . ..Th 1 f)l) + I sjI(11  ' + (I. I (19)

The first two terms in the position vector represent the location of the left shoulder.

Differentiating the position vector gives the expression for the velocity vector. Because

none of the coordinate axes used in the position vector expression are inertial, their rota-

tion must be included as well.

iLl ILO OCOSOL,,.-I, ) , s . ,+td. 0], t1 (20)

After Eqs. (18) and (20) are substituted into Eq. (13) and terms are grouped by

angular rates, the kinetic energy is

2 2
TLI (.5 (ILI + nL L I + InLILO)  (21)

12



+ IIL I/kUL "
{
Sil U() Sili ( +)II 4I  ) + COSI(n CoS 1 + I) [A )

+.56 I It. I + In II L

LL 1.1 r i i I i+0 0 + 111. {I + IIIL I I -tI1. , Slat sil l Sill ( |0 + )1
)  +  

JOS{.
O 

Cos 10 
+

011.) 
) )

The angular rate for the left forearm includes the centerbody angular rate as well as

the angular rates of the body axes on Links L I and L2.

L2 - , + ii +0.12 (22)

This link's center of mass position vector is

= £-L0 COS0Loj + -L 0Sin()1  " + + I X. .2 , (23)

Differentiating the position vector gives the velocity vector.

I'L = CLO CO OL0
O- ,0 )

sill + 1 C.)l- b'LI + 1, L 2 11-)YL (24)

The kinetic energy expression for Link L2 is found after substituting Eqs. (22) and

(24) into Eq. (13) and collecting terms with common angular rates.

T - (0.5(l + m 2'cL2 + I-112£ + n112t ) (25)
L2 2 2 L LLI - L2

+ mL2,LOILI (SI1OL0SIll tOLO 0 IA.) + COS010 OS tL.0 L )) + mL2£LI'cL2COSL2

+ In L2£L0OL2 ( siOLOsill (0 1.+0 . 01 +
0 ,. ) + COs 0 Cos (0 LO + El 

+  
1-2

)

+ OL1 (0.5 ( 1
L2 + n - 1 + nL2L +L2t1,I12CJOS 0 2 )
+ L 2 2mL' +L2 L2 +  2 I'd

.2 2,+ t
5

2 1
L2 + msinOL2 sL.

-s-O +int £2 + in 11 + 21n ££c

+601, (L 2 mL2 LI L 2 CI.
2  

- 2LI1CL2C 1.2

+in 1211,0kLI (Sin O sill (0O,( +01) s 1. 0 COS ~~LID o 0If 0L)

+ mL2t.LO L2 ( silOLosin ((11,0 + (01, 1 + 0 L2 + cosO LoCos (0 + 0 1-2) )

t0 (1 ± 2 + in I Coso
+0OL2 (IL2+L 2L cL2 L2 Li cL2 1.2

+ mL2A4LOL2 (fsinOLO sill01(0 1+01.1 + () +COSO 1.0 Cos 10 LO +0 L1 +OL2))

13



+ OL I| , 
(2 L"L2 + in L . ,  + IIl. I  ,i 2Cos()12

+ULUL.LLmICL2 1-2 1.1 CL2 . Z,

The development for the right manipulator kinetic energy parallels that for the left

manipulator. For the upper arm portion (Link RI), the angular rate is

")RI ti,, + 1 (26)

The position vector is constructed by finding the coordinates of the right shoulder

and adding the vector from the shoulder to the center of mass.

rRI = 
tR0COSORo.O +tR,,SinOr(,), +1cR iR1 (27)

The time rate of change of the position vector is

rRI = RO 1)oCOSO-RO O i- ) o SilI1|R tX) + 
t cR10)RI.'R1 (28)

After calculating the kinetic energy for Link RI and grouping terms with common

angular rates, the resulting expression is

TRI 0
(0 .5 (RI +M MR 0o10) (29)
+ mRI cR I (sinoRosin (0 +0 0 R ) + cOSORo Cos (10 +0R))

2 .2+0.50R (I RI +M RIlCRI)

+OiRI (IRI +mJ RI C +mpR RIn 1 ( sifIORO sin (0 o  Ri) +os0

OOO I OR +Snifl(1R1ROR R O d+ C ROCoS(ORO+ORd))

Angular rate of the fight forearm is

R2 = N 4"0RI +OR2 (30)

Its position vector is

'R2 
=

O COSOROX(0 + 
IRO silRI)I0 + RI + c  ICRX (31)

Differentiating Eq. (31) produces the velocity vector for Link R2 center of mass.

rR2 = tRO)OCOSOR090-Ro0si ROo + )RI Rl +R2 0) R29RI (32)

14



The kinetic energy resulting from substituting Eqs. (30) and (32) into Eq. (13) and

collecting common angular rate terms is

" ,, R2R +11 " e ,,, , (33)I'2 o"0 (0.5 (I R2 + InRn1, R2 IIIR2tRI+I 21Rd( 3

+ IlR2 0iP0RI (SintRO Sin Mko + RI ) + COSORRoICos M RD + I R I + )  
R mR2 RI ,R2 C30R2

+RInROAR2 ( sillo Rosin %I1 + 411 +0 R2 ) +COSt)Ro COS )RO +0 RI +0 Rk))

+i 12 1m 2£Ls
" (i (e.5 ( IR + In I~ + inR21R 2) + IRI tROO .}

R2 R2 RI R2 cR2 2 RIR2CR2

.2 2
+ m

5 0
R2R I R2 + III R2

O + 
c 112)

+06RI (IR2+ 2I + I R2vR2+ S1)R2tRI cR2 R2

+ in R2'ROIl (silly RO sift (44RU +1) RII + "'S RICo 0 lR 0 + ) RI))

+0R2 "R2 + R R2 +
1
R2- RI cR2 R2

+ inR£ I 2( sinl O Sill(0R)+ RiI +02) + Cost)R0 Cos (OR +0 Rl+0)))2

+ORI R2('R +InR2 cR2 R2 t
R I1 R2C SR2)

Expressions for the payload are considerably simpler because inertial coordinates

are available. The angular rate is

(In, 4) (34)

It is not necessary to describe the payload center of mass by passing through either

shoulder as was the case with the manipulator links. The position vector is

rp = X1,9, + YPl (35)

The velocity vector is also simpler because of the inertial frame.

r, -XPN + YpN (36)

15



The payload kinetic energy is derived from substituting Eqs. (14) and (16) into Eq.

(13).

1 (,1 + i11 , 1+ Y ,) (37)

After substituting the expressions for kinetic energy from Eqs. (17), (21), (25),

(29), (33) and (37) into Eq. (12) and expressing the result in the matrix form of Eq. (3), the

inertia matrix, M, is given by Eq. (38). Because the generalized coordinates for the pay-

load are referenced to an inertial coordinate frame, the inertia matrix is decoupled between

the payload and the rest of the system. Coupling does exist between the spacecraft center-

body and each of the manipulators.

Ml M 2M3 Ml M5 0 0 0!
M1 1 M12 M13 M14 M 150

M 2 1 M 22 M23  0 0 0 0 0

M3 1 M32 M33 0 0 0 0 0

M = M 41 0 0 M4M45 0 0 0 (38)
M51 0 0 M 54 M 55 0 0 0

0 0 0 0 0 1I) 0 0

0 0 0 0 0 OmI, 0

0 0 0 0 0 0 0 mp

Expressions for the individual elements in the inertia matrix are given by

M = I m Ic 2  (39)55 R2 R2

M45 = M 54 = M55 +mR2IRI ICR 2 cosOR 2  (40)

M15 = M5 1 = M45 +mR 2 ROtcR 2 cos(ORI +0R2 )  (41)

M +m IIccs +m I 2+2 (42)

M44 = M45 +IRI +mR2RI 2cR2 cROR +mIlIcRI +mR 2"Rl

16



M 14 =M 4 1 :M 44 + IRO(mRIIcRI + nR2RI) cos0Ri (43)

+ mR2tRO cR2 Cos (0R1 +0R2)

M33 -I2 +m 2 Ic 2 (44)

M 2 3 = M 3 2 =M 3 3 + mL 2LIICL2COSOL 2  (45)

M1 3 =M 3 1 =M 2 3 +m 2 Ac 2 co s (0 LI +01,2) (46)

M 2 2 =M 2 3  l + mL2I ICL2 coso 1 2 + ml lc! +m L2 (47)

M 1 2 -M, 1 = M 2 + 11 0, (mI, ]I1Cl, ] + mL2'L 1) cosOII (48)

+ mL2 LO CL2 C s (0 I + L2)
2

Ml =1 I0 + M 2 +M 44 +M Ic( + (m I + m 1,2 ) tlO + (mR I + mR2) IRO (49)

+ 2 R0 (mR ICRI + mR2IR I ) cosOR i + 2mR21ROCR2 cos (OR I + 0R2)

+ 2 1L0 (mL IICL I + mL2IL I) cosOI + 2 mL2e1,0oCL2 COS (0 L I + 0 L2)

2. Centripetal and Coriolis Matrix, G

The G matrix contains all of the centripetal and Coriolis terms. It is most easily

found using

_Tc (1)_

T (2)
G(q,q) - q C q (50)

Tc (8)

where the elements of C i) are defined by the Christoffel symbol

S 10(OM )Mik )Mjk(
= -I~~ "+ ~ qJ(51)

jk 2 k aq1

17



The form of the G matrix for the system of Figure 1 is given as

I
:G,

G-1

G= G 4  (52)

G

0

0

, 1 (,j2 + 20 L)  It + nLI + 2 . sill I (53)

1-
0  

L 
2 0 

LI) (Int1Ll L2 + .Il1

-In L21 Ll 1  0
L2OL2 (200 + 201.1 +01.2) sinOi. 2

-itI.2ILO1C1. (2 o (LI + 0 1.2) I I +  , 2  
) sin 1)tL +0 1. 2

)

-
1ROORI + 2

0(,ORI) (inRIlCRi +mfR21RI
) sinORI

-mR2R.ltCR 26JR2(
2
0o + 2 RI +R2) Sili)R2

2

-1R21LRoCR2(
2 0 0(ORI + 0 R2) + {(4r1 

+('R2) ) sin 
0 R +Or2)

G= LL(O mLI +LI + IL2LLI) shn0 Li - In .21.i &t0l. 2 (
2 0

o+201,1 +61,2) sin
0 L (54)

.2

+mL 2LLOICL 2 00Sin (0 L1 + 0L2)

G3 = mL 2 I.L1 (OJLI +OL,)2sifl0L2 +fI '
1

.2Lo0
1 l.2(OoSif tO,1 +O1,2) (55)

.22

3 LOOOC(m 1+1 (56) 0Ll+0 ,

G4 = RO00 (M R I/IrI + r2 R ) SinURI - IIIR2tRIcr2d2 (200 + 20 R I + 6R2) sinOR2 (56)

+ mr 2 oLcr 2
0 osin (8

RI + 0r2)

2 .2
G 5 = mR2'RIlCR2 (ORI +6R2) sinORZ 

+ 
ITR2) RoLCR 200 s i n (0RI 

+ 0
R2) (57)
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3. Generalized Forces, Q

The generalized forces are found using the principle of virtual work. When there

is no reaction wheel on the centerbody, the system does not experience any external forces

capable of performing work. Six joint actuators apply torques at the shoulder, elbow, and

wrist of each manipulator.

u6 = uL'S Uli M u.W uRS URlF uRW (58)

u6 is simply the joint actuator subset of the complete actuator torque vector, u. The

total virtual work is the sum of the torques applied to the individual bodies times their vir-

tual angular displacements.

N N

5W = 5 6w Z (M1 )50 (59)
i=I 1=1

When the left shoulder joint actuator applies a positive torque on Link L I, a nega-

tive torque is also appiied to the centerbody. The virtual work performed by the left shoul-

der motor is

6WLS = uLS (50( + 8 L I -6 00) (60)

where the positive angles are those associated with the change in Link LI attitude and the

negative angle is associated with the change in centerbody attitude. The left elbow actua-

tor makes a positive contribution to Link L2 attitude and a negative contribution to Link

LI attitude.

SWLE = ULE (800 + 6eLI + 501,2 - 800 - 501.1) = UIESOL2 (61)

The joint actuator at the left wrist makes a positive change in the payload attitude

and a negative change in Link L2.

8WLW = uLW (SOI- 0o- 50LI - 5OL2) (62)
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The right shoulder actuator makes a positive contribution to Link RI attitude and a

negative contribution to centerbody attitude.

5WIs URS (50() + 0 I - 6 00) = UIRS 6 0ZI 1 (63)

Link R2 has a positive virtual displacement due to a positive torque at the right

elbow. The same torque causes a negative virtual displacement of Link RI.

8WRE = URE( 6 0
0 + 0 RI +  R2 - 60 0 - 6 0 Ri ) = URE 6 0R2 (64)

The right wrist actuator has a positive influence on the payload and a negative

influence on Link R2.

5WRw = uRW (01)- 
60 0 - 80 RI - 80 R2)  (65)

Gathering Eqs. (60)-(65) together produces

8W= (-ULW -URW) 6 0 0+ (Ul~S-UIw) 80 LI + (UI.F-ULW) 0 L2  (66)

+ (URS- URW) 50 RI + (uRl" - URW ) 8OR 2 + (ul, W - uRW ) &0p

With respect to the system equations of motion, the generalized force correspond-

ing to a particular generalized coordinate is that portion of the virtual work associated with

the same generalized coordinate. Now Eq. (66) can be transformed into a matrix form.

Q6 = Bu6 (67)

where B is the control influence matrix given by

00-! 00-1
10-1 00 0
0 1 -1 00 0
00 0 10-1 (68)
00 0 01-1
00 1 00 1
00 0 00 0
00 0 00 0
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The only effect of a positive reaction wheel torque applied to the spacecraft is to

alter the centerbody attitude in a positive direction. This manifests itself in the control

influence matrix in the form of another column. This new column is all zeros except for a

single one corresponding to the location of the reaction wheel torque in the u vector. With

the reaction wheel torque as the first element in the control vector as in Eq. (2), the com-

plete control influence matrix is

oo0-I 00-I
1!0 1I00 0

010-1 00 0

00 1 -1 00 0

B 000 0 10- (69)
000 0 0 1 -1
000 1 00 1

000 0 00 0

000 0 00 0

4. Constraints Matrix, A

Because the eighth order system under consideration has only four degrees of free-

dom, an additional four equations are needed to describe the constraints. The eight gener-

alized coordinates are not independent. The constraint equations embody the information

that the manipulators are both grasping the payload forming a closed chain system. The

constraints matrix is derived by writing the system constraints in the Pfaffian form as

Aq + A0 = 0 (70)

These equations come from geometric relationships of expressing the payload cen-

ter of mass Cartesian coordinates in terms of the other generalized coordinates.

ILOCos(0 +0
L O

) +tL Icos (00+0 L +
0

.
1) +1 2 cos (0., + 0 I)I+0 L) +0 1.2 +ICpCOSOp Xp

LOsin (00+OLo) +IL1sin (0o+OLO +OLI) + L2Sill 01" +()LO +01 + 121.) +LCpsin0p = Yp (71)
£ROCos (00 +

0
RO) +'R 1 COS (0 0 +0RO +0 R1 + R2COS (f)+Ro+OR +0 

)R2) - ( p-C) COS0p =XP

IRO
sin (0) + 0R0) + t. I sin (0, + 0 +

0
RI 

) 
+"2sin (0 + oR(I + ORI + 

0
R2) - ( i- eC ) Sinop = p.
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To get the Pfaffian form of Eq. (70), differentiate Eq. (71) and rearrange terms.

The result is

Ii

01.

-I

All AQ2 A 13 (}0A! ' - OI

^: A =A,3 o A , . i: ,1 = '(72)

A 1 () 0 A14 A, A,, -I 01
A 41 0I 0 A~l. 44 A ., I -A iOp

The constant term, A(, is a zero vector. The individual element in the constraints matrix

are given by the following equations

A16 -1cpsinOp (73)

A26 =IClcosop (74)

A3 : (1l-1Cp) sin~p (75)

A46 =- (1p-cp) cosop (76)

A45 = tR2 cos(OO +OR( +0RI +0 R2)  (77)

A A45 + I cos (0 + 0 R + I (78)

A41 : A44+t Cos(00 + 0 Ro)  (79)

A35 = -R 2 sin (0o + ORO + 0 RI + OR2) (80)

A34 A35 - IR I sin (0o +0 R0 + OR )  (81)

A31 = A34 - LRosin (00 + 0 RO) (82)

A23 = L2 cos (0 0 + 01 0 + 0L I + 0 L2) (83)
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All = A23 tI 1Co (00 + o 0 , ) + 01, 1
)  (4)

A21 = A +'+ cos(00 + 0 1'0) (85)

A1 3 =-tL2 sin (00 + 01, o +0 1.1 + 0 012) (86)

A12 =A 13 - t I sin (00 + 01'0 + 01 1) (87)

All = A1 2-l1,osin (0o + 0L0) (88)

If the manipulators are mounted on a fixed platform rather than a rotating base, an

additional constraint equation is included in the A matrix. The constraint is that 00 is con-

stant and therefore

6" o (89)

This constraint is augmented into the A matrix by adding a fifth row. The first ele-

ment in the row is a one. The remaining seven elements are all zeros.

C. SIMPLIFIED EQUATIONS OF MOTION

The potential energy term is zero because motion is confined to the horizontal plane

and the system is composed of rigid members. The inertia matrix, G matrix, B matrix, and

constraints matrix can be found from the results of the previous sections. The remaining

unknowns are the actuator torques and the Lagrange multipliers. By using the equations

of motion and the Pfaffian form of the constraints, one can eliminate the Lagrange multi-

pliers. The time derivative of Eq. (70) is

Aq+Aq = 0 (90)

Solving Eq. (10) for q and substituting the result into Eq. (90) permits one to find an

expression for the Lagrange multipliers.
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-.(MIAT) -I M-

=(AM A (AM (G- Bu) -A() (91)

The inertia matrix is always a square matrix with full rank and therefore invertible To

investigate the invertiblity of AM AT begin by creating a 4x4 matrix out of the third,

fifth, seventh, and eighth columns of the constraints matrix.

'A3 0 -I 0

A23 0 0-1( (92)

0 A 1 0

0 A 0 - I
L 4

Inspection of this submatrix reveals that all of the rows and columns are linearly inde-

pendent even if A 13 = A23 and A35 = A4 5 . Therefore, the A matrix always has rank of 4.

The 4x4 matrix product AM - IA T will also always have rank of 4 and is therefore invert-

ible. Eq. (91) can be substituted back into the equations of motion (Eq. (10)) leaving the

actuator torques as the only unknowns. The resulting equations of motion in which the

Lagrange multipliers have been removed and potential energy is zero are

Mq + G Bu (93)

where

G G- (AM - A r1 ) (AM -IG- Aq) (94)

B = (I- AT ( AM - IAT) - AM - I) B  (95)

D. REFERENCE TORQUES

Given a reference trajectory of the payload with known displacements, velocities and

accelerations, one can use the simplified equations of motion (Eq. (93)) to solve for the

actuator torques that will produce the reference trajectory.
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MClqretf  GICI =  BlI.1u le (96)

The equations tbr specific elements in the matrices of Eq. (96) are the same as already

presented. The subscript "ref" merely means that the displacement, velocity and accelera-

tion terms are the values from the reference trajectory

In this study, the total number of actuators is more than the system degrees of freedom.

Trhis situation is caused by the geometric constraints of multiple manipulators handling a

common object. As a result, there are an infinity of solutions for the reference torques.

One method to select a soecific solution is to establish a cost function. An obvious cost

function is to minimize a weighted norm of the actuator torques.

J = I W u (97)

2- ret u ref

The problem now becomes one of minimizing the cost function (Eq. (97)) subject to

the constraint that the reference equations of motion (Eq. (96)) are satisfied. Augmenting

the cost function with the constraint by means of another Lagrange multiplier leads to

J = uTWUr+y(freIuref-Mrfqref - Grcl') (98)

The minimum of the augmented cost function is found by taking the gradient of Eq.

(98) with respect to the reference torques and with respect to the Lagrange multiplier.

Each of the gradients is set to zero.

-T

V u J 0 = W u ref + Brefy (99)

VyJ = 0 = B1refUref- Mrqref- Grcf (100)

Eqs. (99) and (100) are two equations in two unknowns (y, u ref). Eliminating y

results in an expression for the reference actuator torques.
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U r W VB 1  r (101)

Although the matrix product 3rw ,'", is an 8x8 matrix, it is not invertible. A

pseudo-inverse is needed because the system has only four degrees of freedom. There-

fore, the matrix product 3,iw, [, is rank deficient and has a rank of four at most. This

expression for reference actuator torques minimizes the augmened cost function (Eq.

(98)) at each instant in time. Although the value for the reaction wheel torque is calcu-

lated, it is not minimized by this function. The reaction wheel torque profile is dictated by

the disturbance torques transmitted to the centerbody as a result of manipulator and pay-

load motion. For a given reference trajectory, an infinite variety of joint actuator torques

can produce that trajectory. However, a given reference trajectory has only one reaction

wheel torque profile that is common to all the infinity ofjoint torque combinations associ-

ated with that trajectory. Equation (101) selects from among the infinity of joint actuator

torques the one combination that minimizes the weighted norm cost function. Although

the selection is limited to a single choice, Equation (101) also produces the correct reac-

tion wheel torque for the given reference trajectory.

E. LYAPUNOV CONTROLLER

This material in this section is based on Ref. 16. The purpose of any control law is to

provide system performance that satisfies a specification. As a bare minimum, the control

law must keep the system stable. Because of the highly nonlinear nature of this spacecraft

robotics system, most control laws simply do not apply. The motivation behind using

Lyapunov methods is to develop a control law with guaranteed stability. Recall the equa-

tions of motion of the manipulator system are

M4+G = u (102)
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Solving Eq. (102) for q results in

q= M -1 (Bu -G) (103)

Substituting Eqs. (94) and (95) back into Eq. (103) and grouping terms according to

the form

q= C u+C 2 q+C 3  (104)

leads to the following expressions

= -I {_T(A -IAT)-I~ -I
C1 =M 1[-A (AM A AM )B (105)

C2 = -M-I A(AM-'A T) A (106)

C3 = M -1 (AT(AM -AI) AM-I - I}G (107)

Similarly, the reference maneuver accelerations can be expressed as

9 C u +C " +C (108)
-ref 1rec refr lre.qrel' 3ref

where again the reference subscripts on the C matrices indicate that reference maneuver

values need to be used in their calculation. Let error quantities between the actual vari-

ables and their reference maneuver counterparts be defined by

8q= q-q ref (109)

84= q -qOef (110)

64 4- 4ref
"q q--qref (111)

Now define an error Lyapunov function as

U = 0.5 (6q. 6) + f(6q) (112)

where f(8q) _> 0. Differentiating Eq. (112) results in

27



Of
U = jq-6 1  -6q (113)

Let

af f fF = .. (114)
- [D(bq1 ) O(5q2) ?(6q 7)(

Then Eq. (114) can be rewritten as

U = 6q4. (6q + F) (115)

Substituting Eq. (104) and Eq. (108) into Eq. (111) and then Eq. (111) into Eq. (115)

produces

U = q. (CU-C u )+ (C 2 q -C 2 q) + (C 3-C 3r) + F) (116)
1 1reE- ref re f ref r)f

If one lets the quantity inside the brackets of Eq. (116) equal -KV84 where KV is a

positive definite matrix, then one is guaranteed that U _ 0 and therefore the system will be

stable in the Lyapunov sense. Solving Eq. (116) for command torques, u, leads to

-= CIt (-Kv6q +Cufr- (C2q - C 2 qf) - (C 3rf ) -F) (117)

C is an 8x7 matrix so C It is its pseudo inverse. Equation (119) finds the torques that

should be used rather than the reference torques. All that remains is to choose a function

for f(5q). One can choose

f(8q) = qrK pq(118)

where like KV, K is required to be positive definite. Selection of values for the gain

matrices is beyond the scope of this work. The simulations included in the next chapter

use diagonal matrices with uniform values simply as a matter of convenience. One might

try to adapt the linear quadratic regulator (LQR) problem to find more optimal gains.
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After substituting Eq. (118) into Eq. (114) and that result into Eq. (119), one obtains the

final form of the Lyapunov controller.

u = Ct (- Kv6_+C 1 efuref- (C 2 q - C 2 q,,1 re) - (C 3 - C3 ) - Kp6q) (119)

If the differences between the reference trajectory and the system dynamics are small,

the Lyapunov controller approaches the form of a proportional plus derivative (PD) con-

trol law.

F. REFERENCE TRAJECTORIES

The reference trajectories describe the nominal path that the system follows in moving

from the initial conditions to the desired final conditions. One need only specify reference

trajectories for as many generalized coordinates as there are degrees of freedom. In effect,

the generalized coordinates can be divided into two sets. One set contains the minimum

number of coordinates needed to completely describe the system. The second set contains

all remaining coordinates, (redundant coordinates). The choice of which generalized

coordinates to specify is entirely arbitrary. A reasonable choice includes the payload coor-

dinates and centerbody attitude since the user will probably be especially interested in

these generalized coordinates. The redundant coordinates are the four manipulator joint

angles. Given reference trajectories for the minimum number of coordinates exist, the

redundant generalized coordinates can be derived. This research assumes trajectories are

available which define displacement, velocity and acceleration for the centerbody attitude,

payload attitude, and payload center of mass coordinates (Xr' Yp, Op and 0o).

1. Calculating Redundant Coordinates

Figure 2 illustrates the relevant geometrical relationships to find the joint angles of

the left manipulator. Xp Yp, Op and 00 are obtained from the reference trajectory. Point

LS is the left shoulderjoint. It has Cartesian coordinates given by
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LSI

N.Y)

Figure 2: Deriving Left Manipulator Joint Angles

LS,, = ILOcO((1++o~) (120)

LY = LOil () + LO) (121)

Point Q is the joint between the manipulator end and the payload. The Cartesian

coordinates of this point are

Q= Xp LIPCOSOP (122)

QY = Y ,-Icsinlo (123)
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The distance between the left shoulder and Point Q is given by

LSQ = "(Q ' (Qy -LS 2 (124)

The inertial angle formed by the vector from LS to Q is

(Q, - I'S.
= 'an - (125)

The dimensions of the triangle formed by the manipulator joints are known. Using

the law of cosines, the interior angles at the shoulder and elbow can be found from

P2 = (L + LSQ2 -L2 (126)

211. 1! JSQ

03 = aCOS 1+< 2  (127)
2 1.1 1 .2

All that remains is to algebraically construct the manipulator joint angles from

other angles as follows

0LI = 0 1 += P - (()(I+OLo) (128)

0 L2 = P3 + 180 (129)

The development for the right manipulator is similar. Its geometry is depicted in

Figure 3.

Point RS is the right shoulder joint with Cartesian coordinate

RS. = IRo Cos( o, + 0 RO) (130)

RSy = IRoSin (04, +ORO) (131)

Point P is the joint between the manipulator end and the payload. The Cartesian

coordinates of this point are

P. = Xp + (tP - 1c0) C0O8p (132)

P y = Yp + (tp - 1cp ) sin0p (133)

The distance between the right shoulder and Point P is given by
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RSP

Figure 3: Deriving Right Manipulator Joint Angles

RSP = (P - RSX) 2 + (1)Y-RS ) 2  (134)

The inertial angle formed by the vector from RS to P is

atan tr-RS.(135)
P, -RS,)

From the law of cosines, the interior angles at the shoulder and elbow are

1 2 + RSP 2  (136)
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RI R2 (13)

The geometry in Figure 3 gives the manipulator joint angles based on the other

angles.

O RI = 4  - I +)R, (138)

0R2 = 18o - 6 (139)

Recall from the discussion of the Lyapunov controller that torques are calculated

based not only on the generalized coordinates but their velocities and accelerations as

well. The redundant coordinates have just been found, but the redundant coordinates

velocities and accelerations must still be developed.

Differentiating Eqs. (122) and (123) expresses the velocity of Point Q.

0. = 4p4. +(p 1,"psinop (140)

Oy = yp-QpICPCOSOp (141)

But the coordinates of Point Q can also be expressed in terms of left manipulator

variables.

Q" ='LUcos (00 +OLO ) 
4ILICOS (0 -0" +OtE0 4I)+ CosL2c o .0 +0LO0 LI + 0L2) (142)

QY= ILosin (00+01-0 ) +(L Isin (0o+01o+()1.) + LL2sin (0o +01 +011 +0 12) (143)

Differentiate these equations and rearrange the terms in the form of

6= D0+),1 k (144)

where

D2 (I, 1) = -!IL2 sit) (0 0 + OLO +0 I +0 1 2) - iLI Sin ( 0 + 0 Lo + OL ))  (145)

D 2 (1,2) = -LL2 sin (0+OLO+OLI + 0 L2) (146)

O2 (2, 1) = lL2COS(00+OLO +0 L1 + 0 O.2) +ifLIco s (00 +"OLO + OLI) (147)

33



D2 (2,2) = t.Lzos III ,, +Oll I (LI + 01L2 (148)

I)1(I. I) = -
1
L2 sil(00+OLO+OLI +0L2) - il. I sill) +O) +OLI) - , sill (00+ 0 L0) (149)

l) 1(i ,2) = tL 2 COSI00 +010 +OL1 +0-2) + I cos1 +I +0 j +1 1j0 Cos( 0O+00 (150)

Left manipulator joint velocities are found by rearranging Equation (144).

L 2] 2 ~

where Eqs. (140) and (141) provide the expressions for Q and 0, respectively.

Using the same approach to find the joint velocities of the right manipulator, Point

P is expressed as a function of right manipulator variables

Px I R0coS (00 +0RO) +PI COs (00 +OR( +OR RI) +L'R2cos 00 +ORO +ORI +0R2) (152)

P= /'Rosin (00+ RO) +1RI Sin (00 +0 O + 0 RI 
) + 1 R2 sin (00 + 0 +RO +RI + 0 R2) (153)

Differentiate these equations and rearrange the terms in the form of

=D3 0,+ D , R] (154)

where

D4 (I, I) = -/-1 2 sin (0o+0 +0RI +0
R2) -1RI sin(00+0RO+0Rd (155)

D4 (i, 2) = -'R2zsin (0 + OO + O 0RI + %2 )  (156)

D4 (2, 1) = 'R2COS(00+0RO +R1+0 R2) +LRICOS(0+R0+RI) (157)

D4 (2,2) = .R2 COS (00 + OR0 +ORI + 0R2) (158)

D3 (iI !) = -/.R2 sin (00+0RO +0 R + 0R2) -eRIsin(00+ 0 gO+ 0 R ) -.R0sin(00+0R0) (159)

D3(0,2) = 'R2COS(00+0RO+ R2) + I RI COS(0 +0R+0RI) +1RoCOS(00+0S0) (160)

Right manipulator joint velocities are found by rearranging Equation (154)
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R (1 (161)

where expressions for P, and i, are found by differentiating Eqs. 0 32) and (133).

=XP 
1p i t - 1" il (t62)

0 - Y, +0II - t j cosO, (163)

Manipulator joint accelerations are found by differentiating the expressions for

velocity (Eqs. (i44) and (154)).

= oo 0+n6 + 1), + ,'. (164)

+ 4 RII+' (165)

Solving for joint acceleration gives

D 2 i _ 1 (166)
L L2 L ~ LOL2

R -'4

where the accelerations of Points Q and P come from differentiating Eqs. (140)-(141) and

Eqs. (162)-(163). Derivatives of the D matrices are constructed by differentiating Eqs.

(145)-(150) and Eqs. (155)-(160).

2. Selecting Reference Trajectories

Any path which connects the associated endpoints can be a reference trajectory.

To help ensure that the spacecraft and payload do not experience any unnecessary jerk or

excitation of flexible structures, one might further constrain the path such that the veloci-
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ties and accelerations are zero at the endpoints. Because a reaction wheel is required to

maintain spacecraft attitude, the reaction wheel torque history is a prime candidate for

optimization. Possible performance indices include the integral of the absolute value of

reaction wheel torque

tI
J = J"Uv, he.tdt (168)

or the maximum reaction wheel torque.

J = max( u\heel) (169)

A rigorous method for reference trajectory selection is to develop an optimal con-

trol solution to the two point boundary value problem. The performance index in the opti-

mal control problem is given by

= fLL(ttilt),jdt (170)

Using Eq. (168) as an example,

L = IUhi = IDul (171)

where

[uWb ULS ULE UL 11RS URE UR%1' 1(72

and

D = [i 00 o 0(1 o] (173)

The state equations must be formulated as first order differential equations as

X = fix (t), u (). ] (174)

Because the system dynamics of my problem are second order differential equa-

tions, the state vector for the trajectory optimization is a combination of generalized dis-

placements and velocities.
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,X (175)

The resulting state equations are

o=.,- l i +d+ (176)

where G and 13 are the same matrices as already found in Eqs. (94) and (95) respectively.

Desirable bouniuary conditions are such that the payload is at rest with zero accel-

eration at the beginning and end of the repositioning maneuver. However because the

state vector does not contain accelerations, they cannot be specified as a boundary condi-

tions. If the state vector is increased to include accelerations, then the first order state

equations involve third order derivatives of the equations of motion rather than second

order equations. This prevents including payload accelerations as part of the boundary

conditions. To permit further development of the optimal control problem, the boundary

conditions will be limited to desired positions and zero velocity.

I(t) = [q , (177)

X(t) = Lq (t ) (178)

The Hamiltonian formed by combining the performance index with the state equa-

tions is

H[X (t),U(t),)(t),t= L[X(tt)U(,] + .T (t)FIXMt) u(t),t] (179)

The performance index and the state equations are both linear with respect to the

control vector, u. The consequences of this are that one cannot find a minimum by taking

the gradient with respect to u and setting it equal to zero. The applicable control form is

bang-bang. Separating the Hamiltonian into those terms which premultiply u and those

which do not leads to the control law
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." : .m..,s,,ll,,(180)

U* = U'S~glhlI 1 (1

where

It = If + iiti (181)

The other equations which must be satisfied are
ST il 1 , 0 1'f

. ... . ..- - ,(18 2 )

Because the peiformance index is only a function of u, the first portion of the

above necessary condition is trivial.

L= (183)

rfis not as easily found. The M, G, A, and A matrices are all functions of the state
ox

vector. In addition, the complexity is increased by several matrix inversions in the expres-

sion of r in the , and B_ matrices. Although an analytical expression may be theoretically

possible, finding it was found to be extraordinarily tedious.

Recall, however, that the usefulness of the reference trajectories is to specify the

generalized coordinates, velocities, and accelerations. Therefore, a convenient form for

the reference trajectory is as a polynomial function of time. The following development

uses the payload attitude generalized coordinate to illustrate how the polynomial reference

trajectories are applied. Let

AO = OP (tf) - e0 (to) (184)

where to is the maneuver start time and tf is the final time. The duration of the maneuver

is the difference between tf and to. Op(to) and Op(tf) are the initial payload attitude and the

desired final attitude respectively. If the desired reference path for the payload attitude in

moving from initial to final conditions is a curve which can be represented as a polyno-

mial function, f(T), where T is simply normalized time
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(t - tl)
T -- (185)

tif- tId

then

Op () = (ii, (")+I ) tIl\ ,, (186)

6p ( T) = I' (r) (188)

In order for Eq. (186) to produce the correct initial and final values for op,.,, the

polynomial must be such that

Rit=0) = 0 (189)

fit=1) = I (190)

To produce zero velocity and acceleration at the initial and final conditions

requires that f(t) also satisfy

f'(t=0) = 0 (191)

fr(T=l) = 0 (192)

'(t=O) = 0 (193)

f"(T=l1) = 0 (194)

The minimum order polynomial which satisfies the boundary conditions of Eqs.

(189)-(194) is

f(T) = 6,r5 - 15t 4 + OT3  (195)

The expressions for payload reference trajectory using the fifth order polynomial

become

0 prf (t) = Op(to) + (6t 5 - 15 4+ 10t 3 ) (AOp) (196)
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Op()=(30" 4 _ 60T 3 + 30"-2) (AOJ,) ( 197)

01 (t) ( 120- 3c 180T + 60T) (A0 1 ) 2 (198)

The polynomial reference trajectory is also be applied to the other generalized

coordinates which form the minimum set to describe the system (ie. centerbody attitude

znd payload center of mass coordinates). The redundant generalized coordinates are cal-

culated from the reference coordinates as described earlier.

Higher order polynomials can increase the complexity of the path but otter the

advantage that an infinity of polynomial coefficients satisfy the position, velocity, and

acceleration boundary conditions. The selection of the coefficients affords an opportunity

to optimize the reaction wheel torque. In this system, manipulator actuator torques are

internal while the reaction wheel torque is the only external torque. Therefore, the reac-

tion wheel torque will be equal to the rate of change of angular momentum which can be

calculated directly from a reference trajectory. This technique is more computationally

efficient because it does not require the construction of the G and B3 matrices.

In general, the angular momentum about the inertial origin for each member of the

system is

H = I ,) +m, (r. x ,, (199)

where i, is the moment of inertia of the ith body about its center of mass

,, is the angular rate of the ih body

mi is the mass of the ih body

r is the inertial position of the ith body center of mass

v, is the inertial velocity of the ith body center of mass
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The angular rate, position and velocity vectors were previously developed in con-

nection with determining kinetic energy. Those expressions require some coordinate

transformations to express all the terms with respect to the inertial coordinate frame. The

change in angular momentum is found by differentiating Eq. (199) to produce

+ = in r a (200)

The total system change in angular momentum is the sum of change in angular

momentum for each of the members. After collecting terms with common angular veloc-

ity or acceleration terms, the expression for the system change in angular momentum is

given by
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I + ,( P - klY,) (201)

+6 +1I + III Z +M 12 +2 2 +m [. In I I COS. + I I COSOLlI LI L2 '
1
LI CLI L-')CL2 LLI L L L I l L LO I LI

+21 L21, LIR 1+ . 2 Co ,, 0 L + , In 1- ,,1-01 , L2 Cos , (0 ,, 1.1,% + '"1)' 1o O
1, L2 LI L. 2 12L L2 LZP 21.1

+ 2mR2 R mCR2CS0R2 +Ic 
s 
(I 0+0R

" O')R2fR2 L + R2IR2 + IIR2 I RlR2COSO R2 + II R IRc2 COS (0 +"R.

" R I L2 - 2 1 L 1 1,L2 siI0L2 - 2 nL2 LO I .2 sit) (0 Ll + R) 1.2)R

.2+O R,+0l. - ll-Lir sinl - iin I I co11 1 1 sin (0 +0 L)

.2
+ ilL2 111nlL211-1il L2 SIII0L2 - IIIL21ILO01C 1aSin (01. 1 + 0 1.2) ]

+R6R2 [- 2R2 cOR R 2 - 2m,21R01R Sil (ORI + O2)

.2+0RI [-mR I IRORI sin0RI - mR21RI I sinOR I - I I 2 sill (0 R 1 +0 R2)

.2
" OR2 MR2I 2sinO RZ- In R I IO1,R Sill (0 R1+0R2

+OR0R2 [ m R2IRIIcR2SilOR- rR2RoCR2 ( RI (R2

Any polynomial reference trajectory that satisfies the initial condition concerning

displacement cannot have a constant term. Polynomials which satisfy the velocity and

acceleration initial conditions must not contain linear or quadratic terms. The general nth

order polynomial reference trajectory has the form

f(r) = an'n + an-l n'l + an.2 n'2 + ... + as 5! + a4! 4 + a3! 3  (202)

Derivatives are

f'(%) = nan"-n '1 + (n-I)a,- nt-2 + (n-2)an 2Tn '3 
+ ... + 5a 5t 4 + 4a 4t

3 + 3a 3' 2  (203)
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2OaIt 5 
+

f -() = n(n-l)an nT ' 2 + (n-i)(n-2)an.i x ' 3 + (n-2)(n-3)a, 2 T" 4 + ... + 20a, 5 + 12a4? 4 + (6a3 t (204)

When T=1 and the final conditions, f(1) = I. f (1) = 0 nad f '(1) = 0, are substituted

into Eqs. (202)-(204), these equations can be out into matrix form

an

a
n i

i I (n- I) (n-2) ... 5 4 3 1 ... = W1a (205)

(I) n-i)(n-2) (n-2)(n-31 ... 20 12 61 a

a 4

The column vector of polynomial coefficients can be partitioned. One segment,

a543, contains the coefficients for the third, fourth, and fifth order terms in Eq. (202). The

other segment, ahigh, contains all of the coefficients of order six and higher.

- - fghih (206)

La 54 3 ]

The W matrix can be partitioned accordingly.

w= [wh,,h w 4 ] (207)

One can then solve for the lower order polynomial coefficients in terms of the

higher order coefficients by substituting Eqs. (206) and (207) into Eq. (205). The result

specifies p,..ynomial reference trajectory coefficients which satisfy the boundary condi-

tions.

a - (20-

'q43 -- w -W h hahigh  
(208)

An optimal solution for a polynomial reference trajectory is found by using the

MATLAB function fminu. This tool numerically finds the solution to an unconstrained

function minimization problem using a quasi-Newton method. The function to be mini-
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mized is the rate of change of angular momentum, Eq (201), which can be found once a

reference trajectory is specified. The user makes an initial guess for the higher order refer-

ence trajectory coefficients. The lower order coefficients are calculated by Eq. (208). The

MATLAB function then varies the higher order coefficients and recalculates the lower

order coefficients as necessary to minimize change in angular momentum. One limitation

to this technique is that the algorithm may converge to a local rather than the global mini-

mum.
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III. VALIDATION AND SIMULATION RESULTS

The computer simulations presented in this chapter were obtained using the MATLAB

subroutines included in Appendix B. The integrator uses 4 
t h and 51h order Runge-Kutta

formulas. See Appendix B for documented listings of the computer code.

A. VALIDATION

To verify the equations and find the programming bugs, test cases were developed.

The simulations are analyzed to ensure that universal principles such as conservation of

energy and angular momentum are not violated. Numeric values for the generic dual two-

link manipulator system are contained in Table 1. The generic model is the strawman con-

figuration that all of the test cases are based on with the exception of a few minor varia-

tions. The variations will be pointed out in the appropriate test cases. The values for the

generic model's system properties are picked for uniformity and simplicity. The manipu-

lator links and the payload are modelled as slender rods of uniform density.

I. Conservation of Kinetic Energy

In the first test case, no torques are applied and the initial velocities are nonzero.

Under these conditions, the system links drift subject to the constraints of being pinned

together. Since potential energy is zero and there are no external energy sources, kinetic

energy should remain constant. The system begins with the payload parallel to a line

drawn between the two shoulders and 0.75m away from them. The initial angular rate for

the centerbody is chosen to be 0, = 2 deg/sec. The initial angular rate for the payload is op

= -5 deg/sec. Initial velocities for the payload center of mass are -0.1 m/sec along the x

axis and -0.05 m/sec along the y axis. The remaining generalized velocities are calculated
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TABLE 1. GENERIC MODEL SYSTEM PROPERTIES

Parameter Value

Lo 0.75

LI 0.5
1,12 0.5

Length 11 °  
0. 5

(m) 11?J 05
IR! 0.5

'R2 0.5

1I, 0.7542

M0  5

mI I

Mass nil2 I
(kg) onR 1

m'R2i

nipI

l.o 0

Center &L/ 0.25

of LL2 0.25

Mass &cRJ 0.25

(in) IcR2 0.25

1cp 0.25

10 5

Moments I,, 0.02083

of 1L2 , J2083

Inertia In 1 0.02083

(kg-m 2) -112 0.02083

Ip, 0.02083

Shoulder (L0 90
Location

(deg) ORO4
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based on the values specified for the centerbody and payload. Initial angular rates for the

manipulator links are 0,1 6.6607 deg/sec. o,. -7.0457 deg/sec, OR I = -2.7553 deg/sec,

and OR, = 14.9 127 deg/sec. The graphical results from this test case are included in Fig-

tires 4-8. As indicated in Figure 7, kinetic energy is conserved in this case.

150
0 

R2

100)

500
50 3RI

Angles

-50

-100 -L

- IS50
0 5 10

Time (sc)~

Figure 4: Test Case I Angles
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10 - 2R I

5 - IA
Angle Rates

(deg/sec)

-10
0 5 10

Ti me (sec)

Figure 5: Test Case I Angular Rates

47



16

10

06 04
02

0 -0 -Oi00(I 0 10

Figure 6: Test Case I Time Lapse Stick Figure
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Figure 7: Test Case I Kinetic Energy
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Figure 8: Test Case I Angular Momentum

Test Case 2 is an extension of Test Case 1. This is still a case with nonzero initial

velocities and no external torques. However, the system geometry is altered to be sym-

metrical. In addition to Lonservation of kinetic energy, this test case will ensure that the

symmetry is preserved. The physical alterations in the system involve moving the loca-

tion of the left shoulder from 90 degrees to 135 degrees and decreasing the distance from

the origin to the right shoulder to 0.75 meters. The payload still begins centered between

the shoulders and parallel to the y axis but is 1.2 m from the origin. To maintain symme-

try, the initial velocities must also be symmetrical. The initial angular rate for the center-

body is chosen to be 00 = 0 deg/sec. The initial angular rate for the payload is also zero.

Initial velocities for the payload center of mass are zero along the x axis and -0.05 m/sec

along the y axis. The remaining generalized velocities are again calculated based on the

values specified for the centerbody and payload. Initial angular rates for the manipulator

links are 0LI = 2.3188 deg/sec, OL2 = -7.6851 deg/sec, 0R1 = -2.3188 deg/sec, and 0 R2

7.6851 deg/sec. This combination of system geometry and initial velocities is designed to
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cause the payload to drift toward the origin without changing its attitude. Figures 9-13

show the results from this test case. Kinetic energy is conserved and symmetry is pre-

served.
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(X) I )R2

50 - 0R
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Figure 10: Test Case 2 Angular Rates
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Figure 12: Test Case 2 Kinetic Energy
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Figure 13: Test Case 2 Angular Momentum

2. Conservation of Angular Momentum

As long as a system does not include external torques, one expects that angular

momentum should be conserved. The joint actuators provide internal torques while the

reaction wheel is the only external source. Test Cases I and 2 did not include a reaction

wheel and are therefore subject to investigation with respect to conservation of angular

momentum. Both cases do satisfy the requirement as indicated by Figures 8 and 13. Fur-

thermore, due to the symmetry in the system in Test Case 2, the angular momentum of the

left manipulator links should be cancelled out by the angular momentum of the right

manipulator links. The centerbody and payload should not have any angular momentum.

Consequently, angular momentum for the system should not only be conserved, it should

be zero. Figure 13 show that the angular momentum remained virtually zero. The non-

zero values of about 3x10 1 7 are well within the integration algorithm tolerance of 10-6.

Test Case 3 returns to the generic system from Table 1. Initially, the system is at

rest. Constant torques are applied at both shoulders and nowhere else. The torques are
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o 01 N-m applied in the positive direction at the right shoulder and the negative direction

at the left shoulder. Because the joint torques are internal to the system, angular momen-

tum must still be conserved even though kinetic energy won't be. Furthemiore, since the

system began at rest, the angular momentum should remain at zero. The results are shown

in Figures 14-18. Although the angular momentum did not remain identically equal to

zero, their magnitudes of less than 2x10-7 are within the 10-6 tolerance placed on the inte-

gration algorithm.
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Figure 14: Test Case 3 Angles
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Figure 17: Test Case 3 Kinetic Energy
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Figure 18: Test Case 3 Angular Momentum

Test Case 4 is similar to Test Case 3 but the symmetrical system geometry is used

instead of the generic geometry. This change should produce symmetric motion and zero

angular momentum. The reaction wheel is still disabled. Figures 19-23 indicate the sys-
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tem reacted as expected. Changing the torques to time varying profiles rather than con-

stants led to similar results.
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Figure 19: Test Case 4 Angles
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Figure 20: Test Case 4 Angular Rates

56



16

14

12 1

0

.10 05 p 1.0

X (MI
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Figure 22: Test Case 4 Kinetic Energy
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Figure 23: Test Case 4 Angular Momentum

3. Wheel Torque and Constraints

The remaining test cases involved using the reaction wheel on the centerbody. The

wheel's function was to maintain attitude pointing. The system begins at rest. The torque

applied by the wheel is an external torque in this model. Therefore, its value must be the

same as the change in angular momentum. The wheel torque is found by means of the

inverse kinematics equations in Chapter II. These calculations are entirely independent of

finding the change in angular momentum. After a simulation is finished, a separate sec-

tion in the program code calculates the change in angular momentum using the general-

ized coordinates, velocities and accelerations produced by the integration. These values

are plotted along with those of the reaction wheel torque. A sample plot is contained in

Figure 24. This particuiar plot is for the case of a fifth order polynomial reference trajec-

tory. The rest of the plots associated with this case are presented later in the Simulations

section. The validation tests concerning conservation of kinetic energy and angular

momentum required special circumstances to create those conditions. The requirement
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that the reaction wheel torque equal the change in angular momentum is more universal.

It is a verification check performed with every simulation involving a reaction wheel.

(), 10

Wheel 0.05
Torque

&
Change in

Angular
Momenumi

-0.05
(N-m)

-0.10
5 10

Time (sec)

Figure 24: Sample of Wheel Torque and Change in Angular Momentum vs. rime

An even more universal check also performed with every simulation is the require-

ment that the constraint equations (Aq+A,, = o) are satisfied. Figure 25 shows a sample

plot. This plot was also taken from the fifth order polynomial reference trajectory case.

The values plotted represent the four constraint equations contained in Eqn 72. The non-

zero values are attributed to numerical errors created by the integration.

Finally, a common sense check also performed with every simulation is simply to

verify that the payload was repositioned to the desired final location. This cannot happen

if the torques applied to the system were incorrect. This test is a necessary but not suffi-

cient condition that the code operates correctly.
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Figure 25: Sample of Constraints vs. Time

B. SIMULATIONS

This section presents results from several simulations of an analytical model. The

desired payload repositioning maneuver is illustrated in Figure 26. The final position for

the payload involves a 90 degree rotation and the right endpoint finishes where the left

endpoint started.

I. Lyapunov Point Controller

In the first simulation, the repositioning is done entirely by the Lyapunov control-

ler without the benefit of a reference trajectory. The behavior is that of a point controller

with an initial displacement rather than that of a tracking controller. Due to the absence of

the weighted norm reference torques, this controller cannot be consider to have coopera-

tive nature. Figure 27 presents the angular displacement history. The asterisks on the

right side of the plot indicate the desired final angles. Although the system is approaching

the desired final geometry, it has not completely settled down even after 40 seconds. Posi-

tion errors (Figure 28) are still present as well as nonzero velocities (Figure 29). Also note

that the reaction wheel torque is quite high during the maneuver (Figure 30). The joint
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actuator torques are considerably less than the reaction wheel torque. They are not identi-

fied individually because the most important feature of Figure 30 is the reaction wheel

torque. As a quantitative measure of this controller's quality, fiuWhl dt produces a value of

17.3841. The oscillatory nature of the system is evident in the angular position and veloc-

ity plots. Despite the oscillations, however, the stability of the controller is also illus-

trated. Figure 3 1 depicts the system geometry at several instances during the maneuver.

The left manipulator links actually cross over each other. In experimental hardware, the

links would collide instead. Figure 32 removes the clutter that is present in Figure 31 and

displays only the initial and final geometry. The Lyapunov point controller also does a

poor job of maintaining the centerbody attitude. This is clearly evident in Figures 2" and

31. The attitude error peaks at about 16 degrees.
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Figure 26: Desired Repositioning Maneuver
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Figure 28: Lyapunov Point Controller Displacement Errors
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2. Lyapunov Tracking Controller

This controller uses the following equation to calculate control torques

== CJ I t-K%6q+C1 u .- (c' C 2q 1 .) - (C3 -C ) - Kp6q) (209)[ci I  e - r t - - rcf -C rc

This equation was developed in the analytical chapter and repeated here for conve-

nience. The command torques afe based on errors with a reference trajectory. Reference

torques which resulted from minimizing a weighted norm of the actuator torques associ-

ated with the reference trajectory are also included.

a. 5ih Order Reference rajectory

In this simulation, a fifth order polynomial reference trajectory is applied to the

payload generalized coordinates. The payload coordinates displacements, velocities, and

accelerations resulting from this polynomial are depicted in Figure 33. When calculating

the reference torques from the inverse kinematics, the six joint actuators are all weighted

equally. The maneuver time is selected to last 10 seconds. As is demonstrated in Figures

34-36, the system successfully moves from initial conditions to desired final conditions.

The displacement errors are less than 10-4 deg (Figure 34). The command torques (Figure

37) are an order of magnitude smaller than for the previous simulation which lacked a

reference trajectory. Evaluating fluwhldt leads to the dramatically improved value of

0.5746. More importantly, the centerbody attitude is maintained throughout the maneuver.

Figure 38 shows the time lapse depiction of the maneuver.
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b. N'8 Order Reference 1ajeclorv

By increasing the order of the reference trajectory polynomial while

maintaining the same boundary conditions concerning velocity and acceleration, one

hopes to achieve improved performance. For example, the domain of all sixth order

polynomial functions includes all fifth order polynomial functions as a subset. Therefore,

when searching all sixth order polynomials for coefficients which will minimize the cost

function, one possible solution is the fifth order polynomial already used. Using the

function minimizaoii routine discussed in the previous chapter, a sixth order polynomial

function was found. Although there was some improvement, the change in performance

was not significant. The same was true for a seventh order function. An eighth order

function is presented here. It was hoped that the increased order would be enough of a

departure from the fifth order cause to produce significant improvement in reducing the

centerbody disturbance torque. The algorithm converged to a solution for the eighth order

polynomial after running approximately two hours on a personal computer with an Intel

486-DX50 cpu. The resulting trajectories are very similar to those for the fifth order case

and are displayed in Figure 39. The most obvious difference is a lack of symmetry. Plots

for this case are contained in Figures 40-43. The value of J1w, dt for this case was 0.5705.

69



t 01 a Nomsiuhnd Tllwn

U6 I(x ) 0 0794 1 ..0 6410 U .o27x

D.Im a 1 3
0. 4 I 2764t - 59

7
3x 7.5727-

o 2

05 o

WclIe nS N.eW Tm, Nokmhnd Tim

2 0

Velo""¥ IC~kM 0 \:¢IsiO

0 05 10 to

Figure 39: 8th Order Reference Trajectories
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Figure 42: 8 th Order Command Torques
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3. Modified Lyapunov Tracking Controller

This simulation represents a compromise between the Lyapunov point controller

and the Lyapunov tracking controller. Because the Lyapunov point controller does not use

a reference trajectory, the cost function which minimizes the weighted norm of the actua-

tor torques is completely bypassed. The modified Lyapunov controller removes the refer-

ence torque term from the command torque calculation (Eqn 209) but calculates command

torques based on errors with a reference trajectory. Like the Lyapunov point controller,

the modified Lyapunov tracking controller does not minimize a weighted norm of the

actuator torques and is therefore not a cooperative controller. The angle histories in Figure

44 exhibit less of the oscillatory nature than the point controller simulation, but the accu-

racy shown in Figure 45 is considerably worse than the reference trajectory simulations.

Figures 46-48 also illustrate behavior better than the point controller but not as good as

when command torques are found using Eqn 209. The magnitude of the command torques

show an order of magnitude improvement over the point controller. This is directly attrib-

utable to using intermediate reference points on the way to a desired final state rather than
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attempting to achieve the desired final state all at once. Calculating IUWh Idt produced a

value of 2.4523. The time lapse figure shows that the motion is much less wild but the

centerbody attitude error is still noticeable.
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Figure 44: Modified Lyapunov Tracking Controller Angles
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Figure 45: Modified Lyapunov Tracking Controller Displacement Errors
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4. Comparison of Controllers

Table 2 summarizes the results of the Lyapunov point controller, the two Lyapunov

tracking controller cases, and the modified Lyapunov tracking controller. The point con-

troller clearly has the worst performance with high reaction wheel torque and large center-

body attitude error. The tracking controller performs much better. Reaction wheel torque

is greatly reduced and centerbody attitude error is eliminated. As expected, increasing the

order of the polynomial reduces the reaction wheel torque further, but the improvement is

relatively small. The modified tracking controller strikes a compromise between the point

controller and the tracking controller.
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TABLE 2. COMPARISON OF HYPOTHETICAL MODEL
SIMULATIONS

Centerbody
J I'i ht Umax, Attitude Cooperative

Error (deg)______

Point Controller 17.3841 2.9365 16-2261 No

Tracking 5Order 0.5746 0.0961 0.0000 Yes
Controller 8 th Order 0.5705 0.0885 0.0000 Yes

Modified Tracking 2.4523 0.3950 1.1910 No
Controller
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IV. EXPERIMENTAL WORK

The experimental phase of this research was conducted on the Spacecraft Robotics

Simulator (SRS). The SRS is a derivative of the Flexible Spacecraft Simulator (FSS) ini-

tially developed by Watkins [Ref 17] and later modified by Hailey [Ref 18]. Sorensen

[Ref 18] began the work to convert the FSS into the SRS.

A. SETUP

The SRS permits experimental investigation of two dimensional robotics motion and

rotational spacecraft dynamics. The SRS is illustrated in Figures 49 and 50. The simula-

tor hardware is floated on an eight foot by six foot granite table by means of a thin layer of

air supplied by an external source. The table is polished to within 0.001 inch peak to val-

ley and leveled to prevent gravitational accelerations from impacting the motion across its

surface. The following sections describe the simulated spacecraft with its associated sen-

sors and actuators and the controller which together form the SRS. The spacecraft compo-

nents are the centerbody, two manipulators, and a payload.
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Figure 49: Spacecraft Robotics Simulator
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Figure 50: System Top View

1. Centerbody

The centerbody is a 30 inch diameter, 7/8 inch thick aluminum disk. The center-

body carries a position sensor, rate sensor, momentum wheel, thrusters, and an air tank to

power the thrusters. The centerbody also serves as the mounting platform for the manipu-

lators. The centerbody is floated by a central air bearing and three air pads located at 120

degree intervals near the outer edge. The air pads are each capable of floating 60 pounds

when the air pressure supplied to the pads is 80 psi. The air bearing is attached to an over-

head I-beam which restricts to motion of the centerbody to rotation only.
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Centerbody angular position is sensed by a Rotary Variable Displacement Trans-

ducer (RVDT) mounted directly above the air bearing. The RVDT is a model R30D man-

ufactured by Schaevitz Sensing Systems. Its linear range is restricted to ± 40 degrees.

Centerbody angular rate is measured by a rate transducer manufactured by Humphrey, Inc.

The instrument has a range of± 100 deg/sec and a minimum threshold of 0.01 deg/sec.

Centerbody angular position is controlled by a momentum wheel. The momentum

wheel speed is measured by a tachometer contained in the servo motor which drives the

momentum wheel. The centerbody momentum wheel is powered by a model JR 16M4CH/

F9T servo motor manufactured by PMI Industries. Characteristics of this motor are sum-

marized in Table 3. Although the centerbody also carries two thrusters, they are not used

in this research.

TABLE 3. MOMENTUM WHEEL MOTOR
CHARACTERISTICS

Manufacturer PMI Industries

Model JR I 6M4CH/F9T

Rated Output Speed (rpm) 3000

Rated Current (amps) 7.79
Rated Voltage (volts) 168

Rated Torque (in-ib) 31.85

Height (in) 4.5

Weight (Ib) 17.5

Outside Diameter (in) 7.4

2. Manipulators

Two two-link manipulators are mounted 60 degrees apart on the centerbody. Each

manipulator has three joints. The shoulder joints are supported by the centerbody while

the elbow and wrist joints are supported by two air pads apiece. The links between the
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joints are stiff laterally but permit some flexibility vertically This feature increases the

tolerances on the air pad height adjustment.

Left arm joint angles are measured by the same model RVDT as is used on the cen-

terbody. All three of the left arm actuators are series 9FGHD servo disk motors manufac-

tured by PMI Industries. Joint angles on the right arm are sensed by encoders purchased

with the joint actuators. The encoder resolution is 0.005 dcrees. The right arm joint

actuators arm are harmonic drive dc servo actuators manufactured by HD Systems, Inc.

The shoulder actuator is model RFS-25-6018-EO36AL while the elbow and wrist actua-

tors are model RFS-20-6012-EO36AL. Specifications for the three types of joint actuators

are contained in Table 4.

'-" I, -1

Actuator

Link

Air Pad - 1'

Figure 51: Left Manipulator Top and Side Views
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Figure 52: Right Manipulator Top and Side Views

TABLE 4. MANIPULATOR ACTUATOR CHARACTERISTICS

Manufacturer H-D Systems HD Systems PMI Industries

Model RFS-25-6012 RFS-25-6018 9FGI-D

Reduction Ratio 1:50 1:50 1:148.5

Rated Output Speed (rpm) 60 60 17

Rated Current (amps) 2.9 3.9 5.6

Rated Voltage (volts) 75 75 12

Rated Torque (in-Ib) 174 260 80

Height (in) 8.8 9.6 3

Weight (lb) 9.3 14.1 3.2

Footprint (in) 4.30) 5.10)4.(2

Side of square
2 Diameter of circle
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The joint actuators are all driven by Kepco power supplies. These bipolar, pro-

grammable, linear amplifiers can be controlled manually from the front panel or con-

trolled remotely with a ±10 volt signal. In this application, the power supplies are

operated in the current control mode with the voltage and current limits manually set con-

sistent with the values in Table 4. The specific power supply models and their characteris-

tics are summarized in Table 5.

TABLE 5. POWER SUPPLIES CHARACTERISTICS

Model BOP 72-6M BOP 72-3M BOP 20-1OM
Right Elbow, All Left Arm

Actuators Controlled Right Shoulder Right Wrist Joints
Right Wrist Joints

±72 volts ±72 volts ±20 volts
D ±6 amps ±3 amps ±10 amps

Closed Loop Gain 0.6 (amp/volt) 0.3 (amp/volt) 1.0 (amp/volt)

3. Payload

The payload is a rigid bar mechanically fastened to the ends of both manipulators.

The payload is supported entirely by the air pads on the manipulator wrist joints. Ballast

can be added to the payload to change the mass and inertia characteristics of the system.

This allows for the construction of cases in which the mass of the payload is nontrivial

compared to the spacecraft centerbody. The payload contains no sensors or actuators.

Payload position is derived from the manipulator joint angles.

4. Controller

The AC-100 programmable controller manufactured by Integrated Systems, Inc.

controls the SRS. The AC-100 includes an Intel 80386 Application Processor, an Intel

80386 Multibus I Input/Output Processor, an Intel 80386 Communication Processor, and
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Intel 80387 Coprocessor, a Weitek 3167 Coprocessor, and Analog-To-Digital and Digital-

To-Analog Data Translation DT2402 Input/Output Board, two INX-04 Encoder and Digi-

tal-To-Analog Servo Boards, and an Ethernet Interface Module. The AC-100 also

includes software installed on a VAX 3100 Series Model 30 workstation. The software

permits design of a controller in block diagram graphical form and conversion of the dia-

(Tram to C language programming code. The user is also able to design an interactive ani-

ilation window to operate the controller. The AC-100 receives input signals from the

sensors and the graphical user interface. AC-100 output signals go to the power supplies

driving the actuators or to the graphical user interface for display.

5. System Integration

The differences between the idea! world of a, analytical simulatio, and the real

world of actual hardware became apparent during system integration. A few problems

arose then requiring some modification of the experiment. The first problem conc-cned

floating the centerbody. It exhibited a noticeable resistance to rotation. This is due in part

to the air pressure of the available air supply. Because it was only 40 psi, the air pads per-

formance was degraded by a factor of two. Prior to mounting the manipulators, the cen-

terbody weighed approximately 125 lbs. Adding the shoulder motors increased the

centerbody weight to 145 lbs. The extra weight may have been enough to overwhelmed

the centerbody air pads. A second contributing factor to the centerbody drag is the inabil-

ity of the central air bearing to function except under very low lateral loading. The modi-

fication to the experiment created by the centerbody problem is to not float the centerbody.

A second problem involved using the RVDTs. As envisioned, the experiment

requires one RVDT for the centerbody and three for the left manipulatorjoints. The Space

Dynamics laboratory has a total of three in stock. Although a fourth has been ordered, it

did not arrive in time to be used. Using the existing RVDTs revealed another problem.

Data acquisition of the RVDT signal by the AC-100 exhibited a random toggling of the
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sensed value between a good reading and a value of zero. Because the angle information

is critical to calculating actuator commands, this behavior is unacceptable. Consultation

with the Integrated Systems technical support group revealed that this type of behavior is a

bug within the AC-100 software which has been corrected in more recent versions. Use of

the newer version was not possible because it requires upgrading the VAX workstation

hardware and an updated version of the VMS operating system. The experimental modifi-

cation used to overcome these difficulties is to derive the joint angles and velocities of the

left manipulator by using the sensed information from the right manipulator encoders.

Velocities were not sensed directly but approximated by the change in displacement which

occurred since the last sample divided by the sample rate

A third obstacle involved the limitations of software to design the control algo-

rithm. The block diagram construction method did not permit convenient matrix opera-

tions. Matrix multiplication must be programmed in an element by element basis. Matrix

inversion must also be calculated by constructing a series of blocks to find each element.

This handicap is not serious when the system equations of motion are of low order. How-

ever, the dual two link manipulator configuration is eighth order and beyond the practical

means of programming complex matrix operations, especially matrix inverses. Recall that

the command torques are calculated by the following relationship
-T T

U = (C CI) C 1 (-Kv~q+ .- (C 2 q- C 2 q) -(C 3 - C3 ) - Kp5q)
1) 1 V1ref-ret 2 - ref-ref 3 re3,f)

(210)

When the differences between the actual path and the reference path are small, this control

law simplifies to something very similar to a PD controller. Therefore, the control law

used by the experiment is a PD controller rather than the complete Lyapunov controller.

Performance differences between the left and right manipulator actuators also pre-

sented some problems. Because of the actuator redundancy, any three joint actuators

should be enough to follow a reference trajectory. This fact can be demonstrated by using
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only the three night joint actuators. However, the same trajectory is not possible with only

the left actuators. The torque provided by the left joint actuators is insufficient to com-

pletely overcome the internal friction of the right joint actuators. Even when the left joint

actuators are commanded manually from the front panel, there is no correction to reduce

the position error. When steadily increasing the commanded current to the motor, the cur-

rent limit is reached before the motor responds.

B. RESULTS

The reference trajectory for the experimental phase is slightly different from that used

in the analytical section. The reference maneuver still involves a 90 degree rotation of the

payload with the right endpoint ending wh,re the left endpoint began. The differences

arise from the system parameter such as lengths and masses not being the same as in the

generic hypothetical model. The desired reference maneuver is depicted in Figure 53.

Results are shown in Figures 54-58 and summarized in Table 6. The sudden changes from

believable values to zero in the figures are problems with the data acquisition software and

do not indicate actual changes in the experimental hardware geometry.
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Figure 53: Desired Experimental Repositioning Maneuver
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TABLE 6. EXPERIMENTAL ERROR ANGLES

Errors (deg)
I Maximum

Initial 
Final

Magnitude

0) 0.2550 -0.3383 0.5527

OLI -0,4574 0.0366 0.7797

012 0.0225 0.1873 0.3035

0 RI 0.1037 -0.0808 0.1628

0R2 0.3350 0.3950 0.7742
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V. SUMMARY AND CONCLUSIONS

A. SUMMARY

The dynamics of a dual two-link manipulator system which is repositioning an already

grasped payload have been analyzed. The equations of motion for the system were devel-

oped using Lagrange's method. The resulting equations were highly noninear, coupled,

second order differential equations. Given any reference trajectory, the actuator torques

that will produce that trajectory were calculated to minimize a weighted norm of the

torques. Stability of the system during the repositioning maneuver was ensured by a con-

troller derived from Lyapunov stability theory. Equations for deriving joint angles from

centerbody and payload reference values was aisc developed. Polynomial reference tra-

jectories were presented as an attractive means to specify a reference trajectory.

The analytical model was validated using test cases in which some results could be

predicted in advance. The model demonstrated conservation of energy when no torques

were applied. It also exhibited conservation of angular momentum whenever the reaction

wheel was disabled. The model also maintained symmetric geometry in the appropriate

test cases. In cases which used the reaction wheel, conservation of energy and angular

momentum did not apply, However, comparison of the change in angular momentum with

the reaction wheel torque provided validation. Finally, in all test cases as well as simula-

tions, the constraints were satisfied as measured by Aq + A(, = (.

Results from simulations indicated that the Lyapunov point controller, although stable,

behaved poorly. Large centerbody attitude errors, high command torques, and wild oscil-

lations make this controller undesirable for large i zpositioning maneuvers. The Lyapunov
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tracking controller exhibited dramatic a improvement in pertbrmance. Centerbody atti-

tude errors were removed and reaction wheel torque decreased significantly.

The experimental phase revealed that the controller required further simplification for

compatibility with the laboratory resources. Acceptable results were obtained using a PD

control law with a reference trajectory.

The objectives of this research were to I ) deelop a stable control law that facilitates

cooperation among the manipulators as they reposition the payload, 2) minimize the joint

actuator effort, 3) reduce the disturbance torque transmitted to the spacecraft main body

by the manipulator motion, and 4) validate the analytical development with experimental

results. The Lyapunov controller satisfies the first objective. The second objective is

achieved by the weighted norm calculation of the actuator torques. Reduction of the cen-

terbody disturbance torque is accomplished through reference trajectory selection.

Although a rigorous application of classical optimal control techniques proved impracti-

cal, a polynomial reference trajectory in which the coefficients were selected to reduce the

disturbance torque was easily applied. Difficulties were encountered with regards to the

fourth objective, experimental work. The controller developed analytically could not be

directly transferred to the laboratory. This was due to a combination of hardware limita-

tions and real world conditions instead of the ideal environment of the analytical model.

The controller was adapted to the realities of the laboratory and resulted in successful

accomplishment of a payload repositioning maneuver.

B. ORIGINAL CONTRIBUTIONS

A simulation tool has been developed to analyze the dynamics of a space based robot-

ics system. Some of the features of this tool include:
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(i) rotational motion of the spacecraft centerbody and planar motion of the manip-

ulators and payload:

(ii) minimization of a weighted norm of the actuator torques based on a user sup-

plied weighting matrix,

(iii) calculation of polynomial reference trajectory coefficients to produce a local

minimum for the integral of the absolute value of the disturbance torque based

on a user supplied order for the reference polynomial and an initial guess for

the coefficients,

(iv) a reference trajectory with zero velocity and acceleration at the beginning and

end of the maneuver;

(v) a Lyapunov controller which guarantees stability in the face of perturbations

between the reference trajectory and the actual dynamics caused by errors in

the initial conditions.

An experimental test bed was also developed. This effort involved the design of the

manipulator components and the development of a real time controller. This test bed

remains in the Spacecraft Dynamics and Control Laboratory and is available for follow-on

work.

C. RECOMMENDATIONS FOR FURTHER STUDY

As with any research, this work answers some questions but raises others. One of the

areas that could receive further attention is the selection of the Lyapunov controller gains.

The theory requires positive definite matrices to ensure stability but offers no insights con-

cerning selection of the matrices to improve performance. For any given set of controller

matrices, one expects the relative merits of the point controller, tracking controller, and
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modified tracking controller to remain the same. 1 lowever, still better performance might

be achieved across the board if the gains were optimized.

Rather than merely changing Lyapunov controller gains, one might investigate another

Lyapunov controller by beginning with a different candidate Lyapunov function than the

one presented here. The choices are infinite and the results and performance difficult to

predict.

Trajectory optimization is another area that would benefit from further work. The

function minimization algorithm used to select polynomial coefficients converged to local

minima solutions depending on the initial guess for the coefficients. The search for a glo-

bal minimum for a particular order polynomial requires further investigation. An alternate

approach with respect to trajectory optimization is to use some function other than a sim-

ple polynomial to describe the trajectory. Possible trajectories might be Tchebycheffpoly-

nomials, Legendre polynomials, or Fourier series.

To help bridge the gap between the analytical model and the real world hardware, one

could consider modifying the controller to include joint friction, actuator backlash, sensor

noise, and flexibility. One could also consider using a minimum generalized coordinate

formulation. One might also attack the differences from the hardware perspective by

seeking components that more closely resemble those in the analytical model. Another

improvement in the experiment would be to replace the existing joint velocity approxima-

tions with either an observer or an actually velocity measurement.

Finally, it's a three dimensional world. Extending the analytical model and, if possi-

ble, the laboratory experiment to include out of plane motion should be considered.

96



APPENDIX A: EXPERIMENTAL CONTROL BLOCK
DIAGRAMS

This appendix includes the block diagrams of the System Build super blocks made to

control the SRS. The heirarchy among the super blocks is illustrated in Figure 59. Both is

the parent superblock. The ohters are lower level super blocks.

Both -1

Parameters
I

Trajectories

EncodersI
LeftAngles

IPart I
Controller I

Part2I
Part3

Figure 59: Super Blocks Hierarchy

The block diagram for super block Both is shown in Figure 60. Inputs into the dia-

gram include the sensor signals from the hardware and user operated dials to select the

controller gains and enable switches which select the combination of joint actuators to

enable. The outputs include commanded, reference, and error signals for each of the cen-

terbody angle, joint angles, and payload angle. Motor current commands to the Kepco
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power supplies are also outputs. Block 56 contains the system parameter values for the

experimental hardware. This block is expanded and displayed in Figure 61. Block 8 con-

tains the position and velocity values for a reference trajectory in a look-up table. It also

contains a table to reset the system back to its original geometry to permit rerunning the

reference traie,'-nry. This block is expanded in Figure 62. Conversion of the encoder

pulses from the right manipulator into angle and angle rate information is done in Block 7

which is expanded in Figure 64. Conversion of the encoder pulses from the right manipu-

lator into angle information for the left manipulator is done in Block 49. Details of this

block are shown in Figures 64-64. The PD controllers which convert the error signals into

actuator commands are in Block 40. This block is expanded in two parts. The actuator

commands for the right and left manipulator are shown in Figures 68 and 69 respectively.
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APPENDIX B: MATLAB CODE

The following listings are the MATLAB code used for the analytical simulations. The

modules are included in alphabetical order. The hierarchical relationship between the

modules is illustrated in Figure 70. The integration modules ode2 and odemin are minor

variants of the MATLAB supplied module ode45. The modifications permit more param-

eters to be passed to and from these modules without having to include the extra variables

in the state vector. Similarly, fminu2 modified the MATLAB unconstrained function min-

imization module, fminu, to include some diagnostic statements while running.

MainOpt -

fminu2

MainMin

odemin-

Main2 RefMin2

ode2 AngMo2

Draw3 Eqn2

AngMo Ref2I I
Matx Matx MatxI I I
MatxFix MatxFix MatxFix

AngMo2 AngMo2

Figure 70: MATLAB Modules Hierarchy

109



A. AngMo

% Filename is "AngMo.m"
% This file calculates the angular momentum of the .system
function [1-s] = AngMo(l,s,Ms,CMs,ls,Q,Qdot)

% OUTPUT:
% Ifs = I x7 row vector of angular velocities. The Iirst element is fbr
% the centerbody. The next four elements are for the left upper
% and lower arm followed by the right upper and lower arm. The
% last two elements are for the payload and a iotla of all the
, previous elements. 1110 IlL 1l2 I IR I I IR2 IlP I Tl'otal I
10

% INPUT:
% Ls = 7 x I vector of lengths (in)
% I st element = distance from origin to left arm mount
% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)
%/, 4th element = payload length
% 5th & 6th elements wrt right arm (from wrist toward shoulder)
% 7th element = distance from right arm mount to origin
% [LO; L l L2- LP, R2; RI R01
% Ms = 6xI column vector containing the masses (kg)
%o I st element = mass of spacecraft centerbodv
% 2nd & 3rd elements = mass of left arm (upper arm then lower arm)
% 4th & 5th elements = mass of right arm (upper arm then lower arm)
% 6th element = payload mass
% [MO; ML 1; ML2 MR 1; MR2; MP
% CMs - 6xl column vector containing center of mass locations
% [LcO. LcLl; Lc[.2; LcRI; LcR2, LcPi
% Is 6x I column vector containing the moments of inertias about the
% respective body's center of mass (kg m^2)
% I st element = inertia of spacecraft centerbodv
% 2nd & 3rd elements inertia of left arm (upper arm then lower arm)
% 4th & 5th elements = inertia of right arm (upper arm then lower arm)
% 6th element = payload inertia
% [10; ILL IL2, IRL IR2; IPI
% Q = 8xl column vector of generalized coordinates
% Qdot = 8x I vector of generalized velocities

%%%%%0%%%%%0//%0/00%%%%%%%%%%)%%%%%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%%%%%%%%%/o%%%%%0/0/%%%%%%%%%%%%%%%
% Lengths (m)
1,0 = Ls(l);
1, 1 = Ls(2);
12 = Ls(3);
LP = Ls(4);
R2 = Ls(5);
R) = Ls(6);
RO = Ls(7);

% Member masses (kg)
MO = Ms(l);
ML I = Ms(2);
ML2 = Ms(3);
MRI = Ms(4);
MR2 = Ms(5);
MP = Ms(6);

% Center of mass distances (m)
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LeO= CMs(I);
LcL-I = CMs(2)-,
1.0.2 = CMs(3)-,
.cR I = CMs(4);,

LcR2 = CMs(5);,
LcP = CMs(6);, %measured from left end

%MO! about center of mass
10 = Is(I);,
11, 1 Is(2).
11,2 =ls(3);,

IR I =ls(4);
!R2 Is(5);
IP =ls(6),

% Coordinates (rad & m)

ThlI - Q(2),
ThL2 =Q()
ThR I = Q4-
fhR2 =Q()
ThP =Q(6);,
XP Q()
YP Q(8);

% Coordinate Rates (rad/sec & rn/see)
ThOd = Qdot( I);
'rhL I d =Qdot(2),
ThL2d = Qdot(3);
ThR Id =Qdot(4);
ThR2d =Qdot(5);
ThPd =Qdot(6);

XPd Qdot(7);
YPd =Qdot(8);

% Angular Momentum
110 =ThOd*(10 + MO*LcOA2);
I IL I =ThOd*(IL l+ML I *(LOA2+LcL 1A2+2*LO*LcL- I *cos(Thl. I))) +..

ThL Id*(IL I+MLI1*(LcL ]A 2+LO*LcL I *cs(h 1))).,
HL2 =ThOd*(1L2+ML2*(LOA2+L 1A 2+LcL2 A2+2*I 0*1. 1 *cos(ThL 1) +..

2*L I *LcL2*cos(ThL2)+2*LO*LcL2*cos('I*l. I +*rht2))) +..
ThL ld*(1L2+ML2*(L A A2+LcL2 A2+LO*I, I *cos(1 iii 1) +..
2*L I*LcL2*cos(ThL2)+LO*LcL2*cos('l I +ThI .2))) +.
ThL2d*(1L2+ML2*(LcL2 A2+L 1 *LcL2*cos(fIhL2) +*
LO*LcL2*cos(ThL I +ThL2)));,

I IR I =ThOd*(IR I+MR I *(pjJA2+LcR IA 2+*R*cR I *cos(ThR 1))) +
ThR I d*(IRlI +MR I *(LcR I A2+RO*LcR I *cos('fI I 1)))-.

I IR2 =Th~d*(IR2+MR2*(ROA2+R A A2+LcR2 A2+2*RO*R I *cosThR 1)
2*R I *LcR2*cos(ThR2)+2*RO*LcR2*cos( Il]iR I +ThR2))) +
ThR Id*(1R2+MR2*(R IA 2+LcR2 A2+R0*fR I *cos( [hR 1) +..
2*R I *LcR2*cos(ThRJ2')+RO*LcR2*cos(TrhR I +ThR2))) +..
ThR2d*(1R2+MR2*(LcR2 A2+R I *LcR2*cos(ThR2)+
RO*LcR2*cos(ThR I +ThR2)));

I II'= ThPd~lP + MP*(-XPd*YP + YPd*XP).,
IlITotal =HO +HL I + HL2 +HRI +I1R2+ HP;
HIs=[HO HL I -L2 HR I 1HR2-HPHTotal ;



B. Anps',o2

% Filename is "AngMo2.m"
% This file calculates the angular momentum of the system
% Version 2 also finds the rate of change of angular momentum
function jHs, Hdotsl = AngMo2(Ls,Ms,CMsls,Q,QdotQddot)

% OUTPUT:
% 1 Is = Ix7 row vector of angular velocities. The first element is for
% the centerbody. The next four elements are for the left upper
% and lower arm followed by the right upper and lower arm. The
% last two elements are for the payload and a total of all the
ON previous elements. 1110 HLI HL2 IIRI IR2 lp lotall
% I Idots = I x7 row vector of the change in angular velocities. The order
% is the same as fo; I Is

% INPUT:
% Ls = 7x I vector of lengths (m)
% 1st element = distance from origin to left arm mount
% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)
% 4th elenien: = payload length
% 5th & 6th elements wrt right arm (from wrist toward shoulder)
% 7th element = distance from right arm mount to origin
% [LO; LI. L2, LP- R2; RI: R01
ON, Ms = 6xI column vector containing the masses (kg)
% I st element = mass of spacecraft centerb,dy
% 2nd & 3rd elements = mass of left ani (upper arm then lower arm)
% 4th & 5th elements = mass of right arm (upper arm then lower arm)
% 6th element = payload mass
% MO; ML I; ML2; MR I: MR2; MP]
% CMs = 6x 1 colmn vector containing center ot mass locations
% [LcG, LcL. 1 LcL2. LcRI; LcR2; LcPj
% Is = 6x I column vector containing the moments of inerlias about the
% respective bodv's center of mass (kg m^2)
% 1st element = inertia of spacecraft centerbody
% 2nd & 3rd elements = inertia of left arm (upper arm then lower arm)
% 4th & 5th elements = inertia of right arm (upper arm then lower arm)
% 6th element = payload inertia
% [10; IL I; IL2; IRl. IR2, IPJ
% Q = 8x I column vector of generalized coordinates
% Qdot = 8x I vector of generalized velocities
% Qddot = 8x I vector of generalized accelerations

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%%%%%%%%%%%%%%%%%%%%%%%%0/011/1/10%%
% Lengths (m)
LO = Ls(l);
L I = Ls(2);
L2 = Ls(3);
LP = Ls(4);
R2 = Ls(5);
R I = Ls(6);
RO = Ls(7);

% Member masses (kg)
MO = Ms();
ML I = Ms(2);
MI,2 = Ms(3);
MR I = Ms(4);
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MR2 =Ms(5);,
MP = Ms(6);

% Center of mass distances (in)
Ld) = CMs(I)-.
IdA. CMs(2);
l.cI.2 = CMs(3);,
LcR I =CMs(4);,
L~cR2 = CMs(5);,
I.cP =CMs(6);, %measured from left end

%11 MOI about center of mass
1(1 = ls(I)-,
If,1 I Is(2)-,
11,2 =Is(3),

II s4,
IR2 =ls(5).,

III = s(6);

% Coordinates (rad & m)
'[hi) Q( I);
ThL I =Q()
TrhL2 =Q3-
TbR I =Q()
rhR2 =Q()
ThP Q(6);,
XP Q()
YP Q= )

% Coordinate Rates (rad/sec & m/sec)
ThOd = Qdot( I);
*rhL I d = Qdot(2);
ThL2d = Qdot(3);,
ThR Id = Qdot(4);,
ThR2d = Qdot(5);,
ThPd Qdot(6)-,
XPd =Qdot(7);,

YPd =Qdot(8);

% Coordinate Accelerations (rad/secA2 &m/secA2)
ThOdd =Qddot(I);
ThiL I dd =Qddot(2);
TrhL2dd =Qddot(3)-,
ThR Idd = Qddot(4);
,rhR2dd =Qddot(5);
ThPdd =Qddot(6);,

XPdd =Qddot(7);

YPdd =Qddot(8);

% Angular Momentum
HO =ThOd*(1O + MO*LcO^2),
I IL I =ThOd*(IL I +ML I *(LOA2+LcL I 2+2*LO*LIc. I *cos(Tl, 1 ))) +.

TbL I d*(IL I +ML I *(LcL I A2+LO*LcL I *cs(h 1))).
l-L2 =ThOd*(1L2+ML2*(LOA2+LIA2+LcL2 A2+2*LO*II*cos(TbLI1)+

2*L I *LcL2*cos(ThL2)+2*LO*LcL2*cos(ThL I +ThL2))) +..
ThL Id*(1L2+ML.2*(L A A2+LcL2 A2+LO*!, I *cos(TrhL 1) +..
2*L I*LcL2*cos(Fld[2)+LO*LcL2*cos(flhiI +ThI.2))) +.
ThL2d*(IL2+ML2*(LcL2 A2+L I *LcL2*cos(flhI2)+
LO*LcL2*cos(ThL I1+ThL 2)));

H1R) I Thd*(IR I+MJI I*(ROA2+LcR IA2+2*RO*LcRlI*cos(h I))) +.
ThRI d*(IRI +MRI *(LcR IA 2+RO*LcR I *cos(ThR 1)));,
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I IR2 = ThOd*(1R2+MR2*(ROA 2+R 2+L cR2A2 +2*Ro)*R I *co-( ['hR 1)+
2*111 *LcR2*cos(TrhR2)+2*RO*LcR2*c~s( 'hRiI I +'lhR2)))+
'IhR Id*(1R2+MR2*(R A A2+LcR2 A2+RO* I I *cts( i'hR 1) +
2*R I *LcR2*cos('rhR2)+RO*LcR2*cts (~hR I + IiR2)))+
rhR2d*(1R2+MR2*(LcR2 A2+RlI*LcR2*cos'IlhR2) +
RO*LcR2*cos('rhR I +ThR2)))-

I (P" =' hPd*IP + MP(-XPd*YP + YPd*XP),
I Ifotal =H10+ FIL I + 111-2+ -IRI + HR2 +H1-1
I Is = if10HL I 1112 1III llR2lIPIITotalJ

"I% Change in angular momentum
I 10d = Thodd*(1O + MO*Lc0A2),
111,I d = ThOdd*(IL I +ML~ I *OLOA2+LcL 1 A2+2*LO*l ci. I *COS( T'hL 1 )))+

ThL, ldd*(IL I +ML I *(IcL A 2+LO*I .cI. I *cos( li'ii. I ))) -
ThOd*Thl. Id*2*MIL I *f()*[,c[ I *sinThi. 1) -
ThL ld A2*ML, I *1,0*1.cL I *sin(ThlI-

111.2d = ThOdd*(1L2+ML2*(LoA 2+L I A 2Lcl..2+2 *1 A *l. I *cos( (hli. 1) +,.
2*L I*LcL2*cos(ThL2)+2*LO*LcL2*cost'llI+TIhl.2))) +..
ThL Idd*(1L2+ML2*(L IA2LL A I+,*1 *cos(TL 1) +..
2*L I *LcL2*cos(ThL2)+LO*LcL2*co.-( [hi. I +ThL2))) +...
ThL2dd*(1L.2+ML2*(LcL2 A2+L I *j~c( 2*cos( ThI .2) +..
LO*LcL2*cos(TFhL I+ThL2))) -..
ThOd*ThL Id*2*ML.2*(LO*L I *sjfl(Thl 1 )+1 0*1 .cI .2*sin(TFhI. I +ThI.2))
ThOd*ThL2d*2*ML2*(L I *LL*sn Ih.2)+I .0*1.cL2*sin('Ihl, I +TFhL2))
ThL I d*ThL2d*2*ML2*(L I *LcL2*sin(Thl.2)+1LO*1.cL2*sin( 'I~hL I +ThL2))-...
ThL, IdA2*ML2*(LO*L I *sjf(ThL I)+LO0*I.cI.2*sjn(ThL I +ThI .2)) -..
ThL2d A2*ML2*(L I *LcL2*sjn(ThL2)+I .0*1.cl,2*sin(Thl, I +'il,2))..

I IR I d = ThOdd*(IR I +MR I*(ROA2+LcR IA2+2*IO*I cR1I *cos(*FhR 1 ))) +
ThR Idd*(IR 1 +MR I *(L~cR A A2+RO*I .cR I*c(os( '(hR W)) -
ThOd*TbR I d*2*MR I *RO*LcR I *sjjn( ThR 1) -
ThRld A2*MR I*RO*LcR I *sin(ThR. I)-

I-IR2d = ThOdd*(IR2+MR2*(ROA 2+11 A A2+LcR2 A2+2*RO*R I *cos(ThR I)+
2*R I *LcR2*cos(ThR2)+2*RO*LcR2*cos(ThR I +ThR2))) +..
ThR Idd*(IR2+MR2*(R I A2+LcR2 A2+RO*R I *cosflh 1) +
2*R I *IcR2*cos(ThR2)+RO*LclR2*cos(']IiR I +T'hR2))) +..
ThR2dd*(1R2+MR2*(LcR2 A2+R I *IcR*cos('[IiR2)+
RO*LcR2*cos(ThR I+ThR2))) -..
ThOd*ThR. I d*2*MR2*(RO*R I *sn(h I)+RO*LcR2*sin(ThR I +ThR2))-
ThOd*ThR2d*2*MR2*(R I *LcR2*sin(ThR2)+RO*LcR2*sinj IhR I +ThR2))-...
ThR I d*ThR2d*2*MR2*(RI *LcR2*sin(TIhR2)+RO*LcR2*sin( ThR I +TFhR2))-...
ThR I dA2*MR2*(RO*R I *sin(ThR W )Ro"~l cR2*sin(ThR I +ThR2)) -..
ThR2d A2*MR2*(R I *lcR2*sin(ThR2)+IZj)*I .cR2*sin(TrhR I +ThiR2));

I (Pd =ThPdd*IP + MP*(-XPdd*YP - XPd*YPd + YPdd*XP + YPd*Xlld):.
HdTotal =HOd + HL I d + HL2d + HR Id + HR2d + I-IPd:.
Hdots = [HOd HL Id HL2d HRId HR2d HPd HdTotaIj;.

C. DraW3

% Filename is 'Draw3.m'

function[X,YI = Draw3(Lengths,AngConst,Ang~list.intcrval)

% This file draws the dual arm spacecraft stick figure

% INPUTS:

% Lengths = 7x I vector of link lengths (in)
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% I 1st element is distance from ori gin it) left arm mount
% 2nd & 3rd elements wi-i left arm (trom shoulder toward wrist)
% 4th element is pay load length
% 5th & 6th elements wrt right arm (from wrist toward shoulder)
% 7th element is distance from right arm mount to origin

"/ AngConst =vector of angles to arm mounting locations wrt centerbodv coord
% ~frame (angle for left arm then angle bor right arm)

0/ Angl-ist = nx6 matrix of angle histories. Fach ro%%' represents a
ly, specific time. Each column represents a specific joint
% angle (except the payload angle is inertial)
% I1st column is the center body angle
% 2nd & 3rd columns are the left ann shoulder and elbow
% 41h & 51h columns are the right arm shoulder and elbow
O/o 6th column is the payload (this angle is inertial)

%Interval = Plot everyi "interval'th" time

% OUTPUTS:

% X = vector history of joint x coordinates
0/ Y = vector history of joint y coordinates
% X & Y treat the system as a closed chain beginning at the centerbody origin,
% outward along the left arm, across the payload, inward along the right arm,
% and back to the origin.

[Times,dummy] = size(Ang~list);,
i nks =leigthi(Lengths);
X(l 1) 0;
Y(l.1) 0O;
% Convert the joint angles to inertial angles and reorder them for closed chain use
NAng(:, 1) = AngHist(:, I) + AngConst(lI)*ones( Times. I)-,
NAng(:,2) = NAng(:,l1) + Angl-list(:,2);
NAng(:,3) = NAng(:,2) + AngHist(:,3);
NAng(:,4) = AngHist(:,6);
NAng(:,7) = AngHist(:,l1) + AngConst(2)*ones(Times, 1) + pi.;
NAng(:,6) =NAng(:,7) + AngHist(:,4);,
NAng(:,5) = NAng(:,6) + Angl-ist(:,5);

p= I-,
while p <- Times

for q =11Links
Lastx = 0;
Lasty=O0;
for r =1:q

Lastx = Lastx + Lengths(r)*cos(NAng(p,r))-,
Lasty = Lasty + Lengths(r)*sin(NAng(p,r))-,

end
X(q+l,p) = Lastx;
Y(q+l,p) = Lasty;

end
p = p + Interval;

end
X = [X(1:Links,:); X(2,:)-, X(Links,:); X(Links+l,:)J;,
Y = [Y(L:Links,:); Y(2,:); Y(Links,:); Y(Links+l,:)];

0/0 Plot the Final Case
for q [IL inks

Lasx =0-
Lasty = 0;
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for r= l:q
L~astx = Lastx + Lengthstr)*cos(NAng(TIinies,rw)
Lasty =L asty + lengths(r)*sin(NAng('fimes.r1).

end
Xl-inal(q+I, I) = Lasix;
YFinal(q+1,1) = Lastvy

end
XFinaI = [Xr-inal(l: Links,:)-, XFinal(2,:);, XFinaldinks,:). XFinaItLinks+l,:)I;,
Y~inal = [YFinal(l: Links,:), YI-inal(2,:); YFinaI(Links,:)- YFi nal(L.inks+I1,:)],

ci g.
axis('squarc')
ploi(X.Y,-,XFinal. YFinaI'-',Xf-inaI,YFinal.'x', X(:,. I Y(:. ),.oi.
xlabelC'X (ml)');lylabeIC'Y (m).)
axis('normal')

D. Eqn2

9% Filename is Eqn2.m'
%1, D~ifferential Equations for numerical integrator
function {Xdot,U,TorqRef.Aqdot,J,Res,LHS,RJISDelqI

iqn2(T,X,L s,Ms,CMs,ls,BoundC,Gains,XfDcs. Wu.Wc.Coef.Const Mat)

% OUTPUT:
% xdot = derivatives of state vector at time T
% U =column vector of actual torques commanded at time T arranged
% as [U 1;- U2-. U6, U51 where the number denotes the joint
% associated with that torque
% TorqRef =column vector of reference torques that should be applied
% at time T if the motion followed the rel~erence maneuver exactly.
% These are arranged in the same order as UI.
% Res = column vector of residuals after EOM are evaluated with the
% calculated reference torques. (Residuals should be zero).
% Aqdot = column vector of A*qdot. This is a test to see if the
% constraint equation (A*qdot = 0) is satisfied.
0% I-S = column vector of the EOM left hand side (1.1 IS = M*qddot + (iTilda)
ON) RIIS = column vector of the EOM right hand side (RI IS = l3Tilda*u)

%/ INPUTS:
% T =time (sec)
% State Vector, X, is defined as follows:
% X1l ThetaO0(rad)
% X2 =ThetaLlI (rad)
% X3 = Theta L2 (rad)
% X4 = Theta R I (rad)
% X5 =Theta R2 (rad)
% X6 = Theta P (rad)
% X7 = X component of Payload Center of mass position (in)
% X8 = Y component of Payload Center of mass position (in)
% X9 = Theta 0 Dot (rad/sec)
% XI10= Theta L Dot (rad/sec)
% X II =Theta L2 Dot (radlsec)
% X12 =Theta RI Dot (rad/sec)
% XI 13 =Theta R2 Dot (rad/sec)
% X14 =Theta PDot (radsec)
% X 15 =X component of Payload Center of mass velocity (m/sec)
% X16 = Y component of Payload Center of mass velocity (in/see)
% X 17 =integral of the absolute value of the centerbody disturbance torque
% XI 18 = integral of the centerbody disturbance torque squared
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% Is = 7x I vector of lengths (in)
% ist element = distance from origin to left ann mount
% 2nd & 3rd elements wit left arm (from shoulder toward wrist)
% 4th element = payload length
% 5th & 6th elements wrt right arm (from wrist toward shoulder)
% 7th element = distance from right arm mount to ongin
0./ ILO; L 1 L2. LP; R2. RI- R0I
IN Ms = 6x I column vector containing the mass (kg)
% I st element = mass of spacecraft centerbodv
% 2nd & 3rd elements = mass of left arm (tpper arm then lower ann
% 4th & 5th elements = mass of right arm (upper arm then lower arm)
% 6th element = payload mass
V IMO, MLi IML2; MRI 1MR2- MPI
V.4 CMs = 6x I column vector containing center ol mass locations
M [LcO; LcLI; LcL2; LcRi. LcR2; Lcl!
V, Is = 6x I column vector containing the moments of incrtias about the
% respective body's center of mass (kg mA2)
% I st element = inertia of spacecraft centerbody
% 2nd & 3rd elements = inertia of left arm (upper arm then lower arm)
% 4th & 5th elements = inertia of right arm (upper arm then lower arm)
% 6th element = payload inertia
% 110; 11,l IL2; IRI; IR2; IP]
% BoundC = boundrv conditions for the problem. The first column
% contains the initial x and y component of points Q & P
4y respectively, the x component of the right arm base. the
% problem start time, and the simulation stop time. The second
% column contains the x and y component of points Q & P
% respectively, the x component of the right arm base, the
0% stop time for the ideal reference maneuver, and a flag to
% activate or deactivate the controller. The origin for the
% x and y components is the base of the left arm.
0% Wu = 6x6 control torque cost weighting matrix
% Wc = 8x8 constraint cost weighting matrix
%Yo Gains = I x2 column vector of controller gains. The first value is
% for position gains and the second value is for velocity
% gains.
% XfDes = column vector containing desired values for the angles at
% the conclusion of the maneuver. These are the same angles
% the reference maneuver is trying to create. They are arranged
% as (ThOf; ThL I f; ThL2f; ThRI f; ThR2f, ThPfi.

%%%%0%0/%%%%%%%%%%%°/0%%%%%%%%%%%%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%0/0/%%

ThO = X(i);
ThL I = X(2),
ThL2 = X(3);
ThRI = X(4);
ThR2 = X(5);
ThP =X(6);
Xc =X(7);
Yc X(8);
ThOd = X(9);
ThL I d = X(10);
ThL2d = X( I1);
ThRId = X(I 2);
ThR2d = X(13),
ThPd = X(14);
Xcd =X(15);
Ycd = X(16);
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% Arms mount locations wrt spacecraft centertodl coordinate frame i rad)
lhLO = BoundC(5, I); ThRO = BoundC(5,2);

% Stop Times
TIfR = BoundC(6,2), % Reference Torque stop tIle Isec)
TfC = 13oundC(7,1); % Controller stop time IeA:c

%/, Controller Flag

ContFlag = BoundC(7,2):

% Constraints Matrix Flag
AMatFIag = l3oundC(8, I);

% Centerbody Reaction Wheel Flag
WheelFlag = BoundC(8,2);

% Kinetic Energy Test Flag
K EFFiag = BoundC(I 1,1 );

% Inverse Kinematics Bypass Flag
B~yPass = BoundC(i 1,2).

% Torque selection if bypass is enabled
TorqFlag = BoundC( 12, ),

% Maximum torque from reaction wheel
TorqCap = BoundC(13.I); % Limit enabled
TorqMax = BoundC(13,2); % Limit amount

% Controller Gains:
(pos = Gains( I);
Gvel = Gains(2);

%%%%%%%%%%%%%%
%% CALCULATIONS %%
%%%%%%%0/0/%%0°/0/%
% EOM: M*qddot + dV/dq + G = Qf + A'*Lam
% M is mass matrix
% qddot is column vector of generalized coordinate accelerations
% dV/dq is the partial derivative of the potential function with
% respect to the generalized coordinates. This term is zero for
% this problem because all motion is in the horizontal plane (there
% is no change in potential energy caused by the motion)
% G is a column vector which is a function of q and qdot
% Qf are generalized forces caused by joint torques
% A' is transpose of constraints matrix
% Lam are Lagrange multipliers

%/0%0/0%/%%%%%%%%/0%%
%% State Vector & Derivative %%
%%%%°/%/%0/°/o%%%%%%%%%
Q = [ThO; ThLI; ThL2; ThRI. ThR2; ThP: Xc: YcJ:
Qdot = [ThOd; ThL Id; ThL2d; ThRId; ThR2d. ThPd; Xcd; Ycd];

%%%%%%%%%

%% Matrices %%
%0/%/%%%%%%
AngConst = (ThLO, ThROI;
if AMatFlag

[M,G,A,Adot,BJ = MatxFix(Ls,Ms,CMs,IsQ,QdotAngConst):
else
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edI M,G,A,Adot,BI = Matx(L s,Ms,CMs,Is,Q.Qdot.AngConst).

il WheelFiag
17= I1- 0- U (3 o-O -0. U;U. U,

B = [B7 13J;
end

if Byllass ON, If true, then bypass calculating torquies uising inverse
% kinematics. [his branch of logic is it verification test
% during program development and is not intended for regular

%use once the program is checked out.
if TorqFlag == 0

I = zeros(6,D );J=0;
else

if TorqFlag =-

U [-0.011 0, 0;, 01 0.. 01-1 J =0-1
else

U [-0.01-, 0.,0;0.01-1 001 J = 0.
end

end
if WheelFlag

U = 10;1 U I;
end

else % Normal program flow to find control torques

%% Torques %%

if T<= TfR, % Get the appropriate torque and angle values
% from the reference maneuver calculations

[TorqRef, QRef. QdotRef, Aqdot, J, C I Ref, C2R1ef. C3Ref]
Ref2(Ls,Ms,CMs,ls,BoundC,T,Wu,Wc,Coef,ConsMat).

else % Simuldation is longer than idea) reference maneuver
% Use no reference torques
% Use the desired final values as references

TorqRef = [0;, 0; 0; 0;, 0; 01-,
QRef(l) = XfDes(I);,
QRef(2) = XfDes(2),
QRef(3) = XfDes(3);
QRef(4) = XfDes(4)*;
QRef(5) = XfDes(5);,
QRef(6) = XfDes(6)-;
QRef(7) = XfDes(7)-,
QRef(8) = XfDes(8);,
QdotRef(I) =XfDes(9)-;
QdotRef(2) = XfDes(IO);
QdotRef(3) = XfDes(I I)-,
QdotRef(4) = Xfl)es(i 2);
QdotRef(5) = XfDes(I 3);
QdotRef(6) = XIDes( 14);
QdotRef(7) =XfDes( 15);,
QdotRef(8) = XfDes( 16);
if WheelFlag

TorqRef = [0;, TorqRefl;
end

% Matrices
if AMatFlag

[Mef,GRef,ARef,AdotRefJ MatxFix(LsMs.CMs,is..

elseQRel,QdotRcf.AngCons0-.
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JMRefG Ref.AReL AdotRefi = Matxt I.s. Ms.CMs. Is.QleI QdtIcfl...

end Angtonsli

lBRef = B-
Pt I Ref = AReC*inv(ARef*inv(MRef)*ARct') ,
ClI Ref = inv(MRef)*(eyetM) - Pt I Rel'AReCI*in-( MRe1))*I3Re1l
C 2Rcf =- nv( MRef)*t I Ref**AdotRef:
C3Ref = inv(MRei)*(Pt I Ref*ARcf*,vMlef) - ce( M ))*6GRc1[

end

if CoutF lag %/ Controller is on
lDelq = Q - QRef I
Dclqdot = Qdot - QdotRer'.
'Y/o Controller calculations
Pt I A'in,(Ainv(M)*A')-,
ClI inv(M)*(eye(M) - Pt I *A*inv(M))*13.
C2 = inv(M)*Pt I *Adot.
C3 inv(M)*(Pt I*A*inv(M) - eye(M))*G-,
F2 = (pos * Delq;
F2 [F2(l:6).O.0-OI;-
Ky Gvel * cy e(M).,
Kv(7,7)=O-, Kv(8,8)=O;,
PO3 = pinv(C I)-.

% PO3 = inv(C V*CI1)*CIV, % Resulted in poorly conditioned matrix

%% Complete Lyapunov Controller %%

U = 13t3*(-Kv*Delqdot + ClRef*TorqRcf - (C2*Qdot - C2Ref*QdotRen'
(C3 - M3el) - F2),

%Y% Simplified Lyapunov Controller %%
%% (removes reference torques and %%
%% assumes C2 and C3 terms are small) %%

%Y Kp = Gpos * eye(M);
% Pt3 = pinv(ClIRef)-,
% U = Pt3*(-(Kv+C2RefO*Delqdot - Kp*Delq) + TorqRef-.

else % Controller is off
U = TorqRef-, % Don't adjust torques from reference maneuver
Delq = 999*ones(8, 1); % Dummy value for trajectory error

end % End of Control Loop
if WheelFlag

J abs(U(l));,
else

J =0;
end

end % End of Kinetic Energy Test Conditional

if TorqCap % Upper limnit in wheel torque enabled?
if abs(U( I)) > TorqMax

if U(l) >O
U(I) =TorqMax;

else
U(l) =-TorqMax;

end
end

end
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%% Qf %%%0/%/%%%%
% Qf = B*u These are the generalized forces
Qf= * U-.

%% Lagrange Multipliers %%%%%%%%%%%%%%%%%
% I'OM: M*qddot + dV/dq + (G = Qf + A'*l.am

Solving the EOI for qddot gives: qddot = inv M)*(Q' + A'*l.am - (1)
D l)ifferentiating the lPfaltian orn of the constraint equations

% results in: Adot*qdot + A*qddot = 0.
% Substitution of the expression for qddot into the previous equation
% permits solving for Lam:
% Lam = inv(A*inv(M)*A)*(A*inv(M)*(G -Qf) - Adot*qdot).
Lam = inv(A*inv(M)*A')*(A*inv(M)*((i-Ql) - Adot*Qdot):

%V04%%%%%%%%%%%%%
%% Putting it all together %%
%%%%%%%%%%%%%%%
Qddot = inv(M) * (Qf + A'*Lam - G),

Ills, Hdots] = AngMo2( LsMsCMs.ls,Q,Qdot.Qddot),
% Change in total angular momentum
I Id = ltdots(7);
J = P, Hdl;

% Assemble derivative of state vector for integrator
Xdot = IQdot. Qddot- J(i), (J(I))A2];

%%%%%%%%%%%%%%%
%% Troubleshooting Info %%
%%%%%%%%%%%%%%%

Aqdot = A*Qdot.
1. IS = M*Qddot + G,
RI IS = Qf + A'*Lam,
Res = LI IS - RIIS;

E. fminuO

function (x,OpTIONSJ = fminu2(FUN,x,OI'TIONSGRAi)FJN.PI,P2,P3.P4,P5,P6,...
P7,P8,P9,P 10)

%FMINU Finds the minimum of a function of several variables.
% X=FMINU('FUN',XO) starts at the matrix XO and finds a minimum to the
% function which is described in FUN (usuallv an M-file: FUN.M).
% The function 'FUN' should return a scalar function value: F=IJIN(X).

% X=FMINU('FUN',XO,OPTIONS) allows a vector of optional parameters to
% be defined. OPTIONS(I) controls how much display output is given: set
% to I for a tabular display of results, (default is no display: 0).
% OPTIONS(2) is a measure of the precision required for the values of
% X at the solution. OPTIONS(3) is a measure of the precision
% required of the objective function at the solution.
% For more information type HELP FOIYIONS.

% X=FMINU('FUN',XO.OPTIONS,'GRADFUN') enables a function'GRADFUN'
% to be entered which returns the partial derivatives of the fuinction,
% df/dX, at the point X gf = GRADFUN(X).

121



0/0 Thle default algorithm is the I3FGS Quas. -Newion method with a
%mixed quadratic and cubic line search procedure

Ci~ opyright (c) 1990 by the MathWorks, Inc.
% Andy Urace 7-9-90.

-hu ------- ntialization -----------
xouTr=x(:).
nvars=length(XOU'r),

evalstr =IFU NJ,
i -an v(iFLJN<48)
evalstr--Jevalstr,'(x'j
tOr i = 1: nargin - 4

evalstr = evalstr,',P',nuin2str(i)J;
end
evalstr = Jevalstr.')'J-
end

if nargin < 3, OIPfIONS=1I; end
if nargin < 4, GRADFUN=[I; end

if length(GRADFtJN)
cvalstr2 = [GRADFUNI;,
if -anv(GRADFUN<48)

evalstr2 = levalstr-2, .(x'];
for i1 ~nargin - 4

evalstr2 = [evalstr2,,P,num2str(i)J;,
end
evalstr2 = Jevalstr2, ')];-

end
end

f = eval(evalstr).
n = length(XOUT).
(;RAD=zeros(nvars. 1),
O)LDX=XOUT;,
MATX'zeros(3, I);
MATL=[f;,0OI;-
OLDF=f;,
FIRSTF~f,
[OLDX,OLDF,IIESS,OPTIONSJ~optint(XOUT,f,OPTIONS).
CH-G = I e-7*abs(XOUT)+ I e-7*ones(nvars, 1),
SID = zeros(nvars,I)-,
diff = zeros(nvars, I)-,

OPTIONS(10)=2;, % Iteration count (add I for last evaluation)
status=-1

while status- I
% Work Out Gradients
if --length(GRA)FUN) I OPTONS(9)

OLDF=f;,
% Finite difference perturbation levels
% First check perturbation level is not less than scarch direction.

f = find( I0*abs(CHG)>abs(SD));
CHG(f) = -0. 1 *SD(O.-

% Ensure within user-defined limits
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CHG =sign(CH4G+eps). *min(ma~x(abs(CHG i).oi,,rONS( 16)).OPT'IONS( 17));
for gcnt= 1: nvars

XOUT(gent. I )=XOUT(gcnL)+CI IG( gent),
OPTIONS(IO)=OPTIONS(lO)+I -
disp('While Loop Iteration in Progress');
disp([Ilterations: ',num2str(OPTIONS(lO))j)-
disp{ ['Allowable: ',num2str(OPTIONS(1I4))j);

x(:) = XOUT:, f = eval(evalstr);,
GRAD(gcnt)=(f-OLDF)/(CIIG(gcnt)).
if f < OLDF

OLDF-f,
else

XOUT(gcnt)=XOUT(gcnt)-CHG(gcntu:
end

end
IN Ti-v to set difference to le-8 for next iteration

0 IG = I e-8./GRAD;,
f = OLDF;

% OPTIONS( lO)=OPTIONS( IO)+nvars;
% Gradient check

if OPTIONS(9) ==I
GRADFD =GRAD-,
x(:)=X'bUT-, GRAD = eval(evalstr2)-
graderr(GRADFD, GRAD, evalstr2)-;
OPTIONS(9) = 0;,

end

else
OPTIONS(I 1)=OPTIONS(I )+l;
x(:)=XOUT-, GRAD = eval(evalstr2);

end
------- Initialization of Search Direction ----- ------

if status == -I
SD=-GRAD;,
FIR STF-4;
OLDG=GRAD;,
GDOLD=GRAD'*SD;
% For initial step-size guess assume the minimum is at zero.
OPTIONS(] 18) = max(01, min([ I ,2*abs(f/GDOLD)]));
if OPTIONS( 1)z'O

%disp(jsprntf(C%5.Of %1I2.3g %l12.3g ',OPTIONS(I10),f,-.
OPTIONS( I8)),sprintf(% 1o2. 3g ',GDOL.D) I)-

end
XOUT=XOUT+OPTIONS(1I8)*SD;,
status=4;
i r OPTIONS(7)--O; PCNTI ; end

else
------- Direction Update --- ------ --

gdnew=~GRAD*SD,
if OPTIONS( I)>O,

nuin=tsprintf(V0o5.Of % 1 2.3g %1I2.3g ',OPTIONS( I ),fOPTIONS ? 18)),...
sprintf(' 3/o 12. 3g ',gdnew)];

end
if (gdnew>O & f>FIRSTF)I-f mite(f)
% Case 1: New function is bigger than last and gradient w.r.t. SD -ye
% ... interpolate.

how-'inter'*
[stepsizej=cubici I(fFIRSTFgdnewGDOLD.OPTJONS(I 8)),
if stepsize<0Iisnan(stepsize), stepsize=OPTIONS(I 8)/2-. how--C If%; end
if OPTIONS( I 8)<O. 1 &OPTIONS(6)==()
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if stepsize*norm(SD)<eps
rand('normal')
stepsizerand(lI..
how='RANDOM STEPLENGTriI'..
status=O;,

else
stepsize=stepsize/2-,

end
end
OPT! ON S( 8)=stepsize;
XOUT"OLDX;

eiseif f<FIRSTF
[newstep,fbestj =cubici3(fFIRSTFgdnew,GDOLD,OI1'IONS(1I8)).
sk=(X0UT-QLDX)*(GRAD-0LDG);
if sk>lIe-20

%Y Case 2: Newv function less than old fun, and OK for updating HESS
% .. update and calculate new direction.

how=-,
if gdnew'0

how='incstep';
if newstep<OPTIONS( 18)

newstep=~2*OPTIONS(1I8)+ I -5.
how--lhow,' IF'J;

end
OPTIONS(1I8)=min([max([2, 1. 5*OPTIONJ( 18)1), I +sk+ab-s(gdnew)+...

max([O,OPTIONS(I 8)-11), (I .2+O.3*(-.OPTIONS(7)))*abs(newstep)]),
else % gdnew>O

if OPTIONS(1I8)>0.9
how-'int st';
OPTIONS(I 8)=min(f 1 ,abs(newstep)]),

end
end %if gdnew
tHESS,SDI-updhess(XOUT,OLDX,GRAD,OLDG,HESS,OTJONS);
gdnew=GRAD'*SD;
OLDX=XOUT;
stalus=4;

% Save Variables for next update
F1RSTF=f,
OLDG=GRAD;
GDOLD=gdnew;

% If mixed interpolation set PCNT
if OPTIONS(7) 0, PCNT=l; MATX=zeros(3,I); MATL( )=f-.end

elseif gdnew>O %sk<0O
% Case 3: No good for updating HESSIAN.. interpolate or halve step length.

how'einter st';
if OPTIONS(I 8)>O.O I

OPTIONS(1I8)=O.9*newstep;
XOUT=OLDX;,

end
if OPTIONS( 18)> 1, OPTIONS( I 8)= I - end

else
% Increase step, replace starting oint

OPTIONS(1I8)=max([mn([newstep-OPTIONS( 18),3D,O. 5*OPTIONS( 18)]);
how-'incst2';,
OLDX=XOUT.
FIRSTF=f-,
OLDG=GRAD-,
GDOLD=GRAD'*SD;
OLDX=XOUT;

end % if sk>
% Case 4: New function bigger than old but gradient in on
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% .. reduce step length.
else %gdnew4) & F>FIRSTF

if gdnew<&fFIRSTF
how' red step',
if norm(G-RAD-OLDG)< e- 10; !IESSeye~nv'ars);, end
if abs(OPTIONS( 18) )<eps

rand('normal')
SD~~norm(SD)*rand(SD)
OPTIONS( I8)=abs(rand( I))* Ie-6:.
how='RANDOM SD';

else
OPTIONS( I 8)=-OPTIONS(I 8)/2-,

end
XOUT=OLDX;

end %gdnew>o
end % if (gdnew>0 & F>FIRSTF)H-fiite(F)
XOIJT=XOUT+OPTIONS( I 8)*SD;
if OPTIONS( I)>O

% disp([numhowJ)
end
end %/----- --End of Direction Update -------------

% Check Termination
if max(abs(SD))<2*OPTIONS(2) & (GRAD'*(SD)) < 2*OPTIONS(3)

if OPTIONS(I) > 0
disp("),disp(");disp(");
disp(');disp(");disp(");,

disp('Optimization Terminated Successfully');,
% ~disp(Gradient less than options(2)')-:

disp([' NO OF ITERATIONS=', num2str(OPTIONS(I0))J).,
end
status-- 1;

elseif OPTIONS(1I0)>OPTIONS( 14)
if OPTIONS( I)>=0

disp(");,disp(");,disp(");,
disp(");disp(");,disp(");,

disp('Warning: Maximum number of iterations has been exceeded');
disp(' - increase options( 14) for more iterations.')

end
status--I;

else

% Line search using mixed polynomial interpolation and extrapolation.
if PCNT-0

while PCNT > 0
OPTIONS(]I 0)=OPTIONS( 10)+I;
disp(");,disp(");disp(");
disp('Termnination Check in Progress');
disp(['Iterations: ',num2str(OPTIONS( 10))]);

x(:) =XOUT;,
f =eval(evalstr);

[PCNT,MATL,MATX,steplen,f, howj=searchq(PC NTfOL DX,...
MATL,MATXSD,GDOLD,OPTIONS(i 8), how);

OPTIONS( 18)=steplen;
XOUT=OLDX+steplen*SD:.
if abs(steplen) < I e-6, PCNThO; status- 1; end

end

else
x(:)=XOUT;,
OPTIONS(1I0)=OPTIONS(1I0)+],
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distXCTermination Check in Progress');
disp(I'llerations: %num2str(OPTIONS( iO))D),

f = eval(evalstr);
end

end
end

x)=XOUT;.

disp(");,disp(");disp(");

disp(final Evaluation in Progress');
f eval(evaistr)-,
if f > FIRSTE
OI'TIONS(8) = FIRSTF;

x)=OL DX;
else
OPTIONS(8) =f,
end

F. MainMin

% Filename is "MainMin.m"
% This is the routine used by "MainOpt.m" to optimize the reference
% trajectory polynomial coefficients. It is a scaled down version
%/~ of the dual arm spacecraft program, "Main.m". This version does
% not integrate the state variables not include a Lyapunov controller.
% The only integration that does take place is the optimization cost
% function.

function [JOpti = MainMin(UpCoefConstMatFlags)

%clg;clear,
format compact;formnat short;

k = length(UpCoef),
A543 = inv(ConstMat(:,k+l:k+3))*([l; 0; 01 - ConstMat(:,l:k)*UpCoef'),
Coef = UpCoef'; A5431, % Reference trajectory polynomial coefficients

% Reference Maneuver Start and Stop Times
TO =0;

TfR= 10;
TfC =10;

MetaFlag = Fiags(l);
ContFlag = Flags(2);
PertFlag = Flags(3);
AMatFiag = Flags(4);
WheelFlag = Flags(5);
EOMFlag = Flags(6);
PlnvFlag = Flags(7);
KEFlag =Flags(8);
OutFlag = Flags(9);
Trace =Flags(I0);
SymFiag = Flags(I 1);
ByPass =Flags(I 2);
TorqFlag =Flags(13);

Tol = le-6; % Integration tolerance
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R2D = 180/pi; % Conversion factor from radians to degrees

% Lengths (m)
LO = 0,75; % Origin to left shoulder
I =0.5;, % Left upper arm

L2 =0.5-1 % Left forearm
Lp = 0.5;, % Payload
R2 = 0.5; % Right forearm
R I = 0.5 % Right upper arm
RO =sqrt(2*0.75A2);, % Origin to right shoulder
Ls = [LO;, LI', L2- LP;, R2, RI; ROI;

% Member masses (kg)
MO =5-,
MLI = 1,
ML-2 = 1;
MRI = 1,
MR2 = I-,
MP = (-,
Ms = [MO; ML I- ML2; MRI1; MR2; MP];

% Center of mass distances (in)
LcO = 0;
LeLI = 0.25;
LcL2 = 0.25;,
[cR1I = 0.25,
L~cR2 = 0.25;,
LUP = 0.25;
CMs = [LcO; LcL,1; LcL2; LcRl1; LcR2;, LcP];

% MOI about center of mass: Ic = (1/12)*(mass)*(ength)A2
10 =M0;
%1O = 0
ILI =0112) *MIA *LJA 2;
lL2 =(1/12) *ML2 * L2 A2;

IRI =(1/12) *MRI * RJA 2,
1R2 = (1/12) *MR2 * R2A2;
IP = (1/12) *MP * LPA2;
Is =[10; ILl; IL2;, IR I 1 R2; IP];

% Nominal initial and desired final locations of payload
% Point Q is at wrist of left ann
% Point P is at wrist of right arm
QxOn 0. 125; QyOn =1.5;
PxOn=0.625; PyOn = 1.5;
Qxf =0. 125; Qyf = 1.0;
Pxf. 125; Pyf=l1.5;

% Nominal initial and desired final locations of centerbody
hOO =0;

Th~f O/R2D);

% Arms mount locations wit centerbody coordinate frame (rad)
ThLO =pi2;
ThRO = piI4;
AngConst( 1) = ThLO;
AngConst(2) = ThRO;

% Symmetric geometry to center arms and test kinetic energy
if SymFlag

ThLO = 3*pi/4;
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AngConstt I) IThLO;,
R() = LO-. % Origin to right shoulder
1. s(7, 1) = RO:.
QxOn -0.25-. QvOn 1.2.
lP\0n =0.25-. PyOn = 1.2,

end

BoundC(I 1) = QxOn; BoundC(l,2) = QyOn:.
BoundC(2,I) = PxOn-; loundC(2,2) = IPvt~n:
I iotmndC(3, 1) = Qxf;, loundC(3,2) = Qy f.
lloundC(4,l) =PxfT. tBoundC(4,2) = I f
BoundC(5,l) = ThLO, BoundC(5,2) =TIO.
lBoundC (6,l1) = TO-, BoundC(6,2) = TI'R
13oundC(7,I) = TfC;, loundC(7,2) =CornFlag:,

I ioundC(8. I) = AMatFlag; BoundC(8,2) =Wheellag.:

IloundC(9,l1) =' ThO()- BoundC(9,2) =I*liOi':.
IloundC( 10,1 )= EOMFIag-, BoundC( lO.2)=lln'ag
lBoundC( 1, 1)= KEFIag; BoundC( I 1,2)= 1W Plass:.
lBoundC( 12, 1)= TorqFlag;

% Weighting Matrices
'o/ Control torques are calculated to minimize the followving cost function:
% = 0.5*(u'*Wu*u +(A'*Lam)y*Wc*(A'*I,am))
if WheelFiag

Wu = eye(7); % Control Torque Weighting
else

Wu = eye(6);.
end
%Vif WheelFiag
% Wu = zeros(7,7)-,
%else
% Wu = zeros(6,6);,
%end
%Wu(4,4)=1e5-,
%Wu(7,7) I e5;
%Wu(2,2)= I 1;
%Wu(5,5)I e 10;
Wc = zeros(8,8); % Constraint Force Weighting
%We = cye(8);

%% INITIAL CONDITIONS %%

'o/ Desired Initial Payload Parameters
ThP O = atan2(PyOn-QyOn,PxOn-QxOn);
Xc =0.5 * (Px~n +Qx~n);
YcO =0.5 *(PyOn +QyOn);

QxO = QxiOn;
QyO =QyOn;
PxO =PxOn;
PyO =PyOn;

% Initial State
XO =0;

%% INTEGRATION %%

% RefMin2 uses change in angular momentum to find wheel command torque
[T,JlntJJ odemin('RefMin2',TO,TfR,XO,Tol,TFrace.L~s,Ms,CMs,Is,BoundC,..
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Wu,Wc,Coef.ConsLMat):
% Optimization cost function is integral of J
k = length(T);,
J10pt = Jlnt(k),
%i00pt =maxtabs(J));,

G. MlainOpt

% Filename is "MainOpt.m"
% This routine optimizes the dual arm spacecraft cost function
IN. by changing the polynomial coelficients which describe the
IN% reference traiectory. It calls "Main2.m"

%clear
dC
home
format compact
format short

I JpCoelU) = 10J; % Starting Guess
%I JpCoelb = UpCoef:, % Use last values for starting guess
k = length(UpCoeft)),
options = [1; % Default values
options(l) =0, % Display during optimization cycle: 10On, 0=()l
options(1 4) 1 lOO*k;, % Maximum number of iterations

%% Flags during optimization %%

MetaFlag = 0;, % Creates metafile named "mainmet"
ContFlag = 0-. % Controller Status Flag: I10n-, 00Of1
PertFlag = 0; % Perturbation Flag (O=no perturbation, Il=perturbation)

% The perturbation is to check the controller by
% disturbing the actual initial state away from nominal.
% The reference torques are based on nominal.

AMatFlag =0-; % Size of A matrix: 0- 4x8 (Free Centerbodv)
% I = 5x8 (Fixed Centerbody)

WheelFlag = I % Centerbody Reaction Wheel (I =On. 0=6171)
EOMFlag=8; % Specifics number of cost function constraint equations

% ~3 =only payload equations
% ~5 =only spacecraft equations

% any other value =all 8 equations
PlnvFlag = I - % Psuedo-Inverse Flag (for use in finding reference torques)

% I = Use psuedo-inverse
% 0 = Use inverse

KEFIag =0; % KE Test Flag
% I = Nonzero velocity initial conditions
% 0 = Zero velocity initial conditions

OutF lag =0- % Output Flag
% I = Display output
% 0 = Don't display output

Trace = 1; % Observe integration
% I =Observe
% 0 = Don't observe

OptF lag = 0, % Optimization Flag
% I = Perform optimization
% 0 = Don't perform optimization

SymFiag =0; % Symmetric Geometry Flag
% I = Symmetric geometry
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% 0U=Nonsv mmetne geometry
ByvPass =). % Torque calculation bypass flag

% Il=Bpass
% 0 = Use inverse kinematics

l'OrqFlag= 0 %/ TorquAes to use if bypass eniabled
% 0 = No Torques ([)ri 1t

% I = One Shoulder Jorque
% 2 = Symmetric Shoulder Torques

*I'rqjCap = 0-, % Maximum limit on wheel torque
% I = Inabled
% 0 = D~isabled

lorqMax = .075-% Limit on wheel torque ifl'orq(.ap enabled
Vlags IM = Metailag;
IH'agsl(2) =ContFlag;,
Flagsl1(3) =PertFlag;
H;agsl(4) = AMatFiag;,
Flags[ (5) =WheelFlag;,
Flagsl (6) =FOMF lag-,
Flagsl1(7) =PlnvFlag;
Flags 1 (8) =KEFlag;
FHagsl(9) =OutFlag;
Il'agsl(lO)-= Trace;.
F'lagslI(I 1)= SymFlag.
lIlagslI( 12)-- By Pass-.
Flags I(13)= TorqFlag;
Flagsl1(14)-- TorqCap;
FlagslI(1 5)- TorqMax;,

%% Flags after optimization %%

Flags2 = FlagslI-
Flags2(1) =0-, % MetaFlag: 14)n, 0=OIT (File is "mainmet")
Flags2(2) =I-, % Controller Flag: I 0On, 0=OIT
Flags2(3) =0;, % Perturbation Flag: I =On, 0=Off
Flags2(5) =1;- % Wheel Flag: l=On, 0=Olf
Flags2(8) =0;, % Kinetic Energy Flag: l=On. (=Off
Flags2(9) =I-, % Output Flag: 10n 0=OIT*
Flags2(l0)= I; %TraceFlag: l-On,0=Off
Flags2(1 I)= 0-, % Symmetric Geometry Flag: l=Sym, 0=NonSvm
Flags2(12)= 0;, % Inverse Kinematics B~ypass: l=Bypass, 0=lnver-,e Kinematics
Flags2(l3)= 0, % Torq Flag: O=No Torq, IlOne To;rq, 2=Two Symmetric Torqs

% Torq Flag is for when the bypass is enabled
Flags2(1I4)= 0-, % TorqCap: I=0n. (OITf
IFlags2(15)= 0.075-,% Limit on maximum wheel torque
I-lags2(16)=' 0, % DocFlag: 10On, 00l1'

% separate meta files for each page ("doc#. met")
DiaFlag =0;, % Diary Flag

% I =Create diary file "maindia"
% 0 =No diary file

ConstMat = ones(3,k+3);,
for n=l :k+3

ConstMat(2,n) k+6-n;,
ConstMat(3,n) ConstMat(2,n)*(ConstMat(2,n). I);

end

i JpC'foptions j = fniinu2('MainiMin',UpCoel,optionsI 1,ConstMat,Flags 1);
end

if DiaFlag
diary main.dia

end
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if --OptFlag
IUpCoef = UpCoef0O;

end
IJilnti = Main2(UpCoefConstMat,Flags2)-,

$4 Plot poition, velocity, & acceleration reference tralectones
k = lcngth([JpCoet):
A543 = inv(ConstMat(: ,k+lI:k+3))*([l -1 Q, 01 - ConstMat( .1 .k)*UpCoer).
Coef ft~pCoef - A543J;, % Reference tral .ectorv polynomial coefficients
k = tength(Coet);
Steps =2 1
t'or m. = 1: Steps

for n=1: k
CTau(1-+I I-n) = Coef(k+ I -n)*Tau'^(n+2)-,
CTaud(k+ I -n) = Cocf(k+lI n)*TauA(n+ 1),
CTaudd(k+ I -n) = Coef(k+ I -n)*TauA(n)-,

end
W(ni) =ConstMat(l,:)*CTau;-

Wd(m) =ConstMat(2,: )*CTaud'-,
Wdd(m) =ConstMat(3,:)*CTaudd',

end
clg
T=O: I /(Steps- 1)i: 1;
suhplot(22 I)
plot(T,W).t(itle('Position vs Normalized Time'),
xlabel('Tau (sec)');,ylabel(Position');
subplot(222)
title('Reference Trajectories')
subplot(223)
plot(T,Wd);,titleC Velocity vs Normalized Time')-.

subplot(224)
plot(T,Wdd)-,title('Acceleration vs Normalized Time'),
xlabel(Tau (sec)');yiabel('Acceleration');
if Flags2(i)

meta main
end
if Flags2( 16)

meta doc6
end
pause

disp(lnitial guess for highest order cocfficients').disp(IJpCoeU').
disp('Coefficients in descending order');disp(Coef).
disp('Jntegral of Cost Function,(JlntAbs & JlntSqr)');disp(Jlnt);
if OptFlag

disp('Iterations');disp(options( 10));
end
diary off

H. Main2

% Filename is "Main2.m-
% This routine is the driver for the dual arm spacecraft problem
% but is called by "MainOpt.m" after the polynomial reference trajectory
% coefficients have been optimized.
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function IJIntTotaI I = Main2(UpCoef,CoPntMat.Flags)

'4Calculate the coefficients for orders five. four. and three.
0/6, Include these with the higher order coefficients in a vector.
k = length(llpCoet),
A543 =invtConstMat(:,k+l :k+3))*([ 1;- 0;, 01 - ConstMat(:, I :k)*IUpCoef'),
Coef =IJ~pCoef .A543J;, % Reference trajectory polynomial coefficients

%% 0/o/Q %%
"/ Reference Maneuver Start and Stop Times and Controller Stop Times
%Y Setting the controller time longer than the reference maneuver time
% ensures that the controller eliminates any errors remaining after the
% reference trajectory should he complete. TO exercise the controller
% only wvith no reference trajectory, set the reference maneuver stop
% time to a negative value.

TfR= 10-,

MetaFlag =Flags(l),
Cont- lag =Flags(2);
PertFlag = Flags(3);
AMatFlag =Flags(4),
WheelFlag = Flags(5);
EOMFIag =Flags(6);
PlInvFlag = Flags(7),
KEFlag = Flags(8);,
OutFlag =Flags(9);
Trace =Flags(10);
SvmFlag = Flags( 11);
6v Pass =Flags( 12)-,
TorqFlag =Flags(I 3),
TorqCap =Flags(14);

TorqMax = Flags(15)-,
DoeFlag Flags(l6);

Pert=-10;, % Perturbation of initial payload angle, ThetaP (deg)
Tol = I e-6, % Integration tolerance
Interval = 3; % Stick figure drawing includes every lnterval'th time
R2D = 180/pi; % Conversion factor from radians to degrees

%% System Parameters %%

% Lengths (in)
LO = 0.75;, % Origin to left shoulder
LI = 0.5; % Left upper arm
L2 =0.5; % Left forearm
LP = .5; % Payload
R2 = 0.5; % Right forearm
RI 0.5; % Right upper arm
RO sqrt(2*0.75A2);, % Origin to right shoulder
Ls [ LO;, L 1; U2 LP; R2; RI1; R01;

% Member masses (kg)
MO =5;,
MLI = 1;
ML2 = 1;
MRI = 1;
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MR2= 1;
Ml, = I.
Ms = jlMO;MLI; ML2- MRI: MR2; MPI;,

9 Center of mass distances (in)

1I.l = 0.25,
I.cl.2 = 0.25-;
l.cR I = 0.25:
LcR2 =0.25-,
jLj) = 0.25:
CMs =ILcO;, LcL I - Lcl-2- LcR I - LcR2-1 LeI:l

1.MOI about individual centers of mass
"/,Arms are modelled a-,slender rods: Ic=(I/12y(mas.%*(ength )A 2
10 = MO.,
11.1l (1/12) *MLl * LIA2,
11.2 = (1/12) * ML2 * L2"2-.
IRI = (1/12) *MRI *RJA 2-,
IR2 = (1/12) * MR2 *R2 A2;,

IV =(1/12)*MP *[LPA2-,

Is = 110;, ILLI 11L2- IRE: 1R2: IIPI

% Nominal initial and desired final locations of pay load
%R Point Q is at wrist of left arm
% Point P is at wrist of right arm
QxOn 0. 125;, Qy~n = 1.5,
PxOn 0.625; PyOn = 1.5;
Qxf =0. 125;, Qyf =1.0;,

Pxf =0. 125;, Pyf 1.5;

% Nominal initial and desired final locations of centcrhody
'rhoo 0/112D.
Tlhof =OIR2D;,

% Arms mount locations wrt centerbody coordinate frame (rad)
ThL.O= pi/2;
ThRO =pi/4;
AngConst( I) = ThLO;
An gConst(2) = ThRO;

% Symmetric geometry to center arms and test kinetic energy
if SvmFlag
ThlO0 3*piI4;
AngConst( I) = ThLO;
RO = LO0: % Origin to right shoulder
l.s(7, 1) = RO;
QxOn -. 25; QyOn = 1.2:,
PxOn 0.25; PyOn = 1.2;
end

% Assemble information required in other subroutines into a matrix
BoundC(1,l1) = QxOn-, BoundC(1,2) =QvOn:
LBoundC(2, I) = PxOn; BoundC(2,2) =PyOn;
IBoundC(3,1I) = Qxf;, BoundC(3,2) = Qyf;,
IBoundC(4,1I) = Pxf-; BoundC(4,2) =Pyf;,
BoundC(5, I) =ThLO; BoundC(5,2) =ThRO:.
lBoundC(6, I) = TO; BoundC(6,2) = rfR-.
BoundC(7, 1) = TfC; BoundC(7,2) = Contl lag:.
lBoundC(8, 1) = AMatFiag; BoundC(8,2) = WheelF lag;
BoundC(9,I) = ThOO; BoundC(9,2) = ThOf;,
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I 3oundC( 0O, !1)= F.OMFIag, BoundC(IO.2) = P'in\ F'lag,
BoundC( I 1, 1)= KEFlag; 13oundC( I 1.2) = 1 iv Pass.
I 3oundC( 12.1 )= IorqFlag;
IloundC( 13,1)= TorqCap, BoundC(I 3.2)= TorqMax:

% (;ip are gains for angle I ixsition error
% Giv are gains for angle 1 velocity error
(pos = 0.5; % Position error gain
(ivel = 0.2: % Velocity error gain
(ains = IGpos, Gvel];

% Weighting Matrices
% Control torques are calculated to minimize the fhllowing cost function:
% J =t.5*(u'*Wu*u + (A'*l.am)'*Wc*(A'*I.am 3)
No Wu is the control torque weighting matrix
% We is the constraint force weighting matrix
if WheelFlag

Wu = eye(7) % Control Torque Weighting
else

Wu = eye(6);
end
%if WheelFlag
% Wu = zeros(7,7).
%else
% Wu = zeros(6,6);
%end
%Wu(4,4)=le5: % Penalty on wrist motors for free centcrlxv case
%Wu(7,7)= I e5;
%Wu(2,2)=le O: % Penalty on wrist motors for fixed centerbody case
%Wu(5,5)= I e IO;
Wc = zeros(8,8); % Constraint Force Weighting
%Wc = eye(8);

%%%%%%%%%%%00%%%%
%% INITIAL CONDITIONS %%
%%%%%%%%/Q/%%%%%%%%
% Desired Initial Payload Parameters
ThPO = atan2(PyOn-QyOn,PxOn-Qx0n);
XcO = 0.5 * (PxOn + QxOn);
YcO = 0.5 * (PyOn + QyGn);

if PertFlag % Perturbation enabled
ThPO = ThPO + Pert/R2D; % Perturb payload angle
QxO = XcO - LcP*cos(ThPO); % Perturb arm end points
QyO = YcO - LcP*sin(ThPO);
PxO = XcO + (LP-LcP)*cos(ThPO);
PvO = YcO + (LP-LcP)*sin(ThPO);

else % No Perturbation
QxO = QxOn;
QyO = QyOn;
PxO = PxOn;
PyO = PyOn;

end
PertCrd = [QxO QyO PxO PyOj;

% Left Ann
% Elbow is left of line from arm base to Q (RQ)
LSx = LO * cos(ThOO + ThLO);
LSv = LO * sin(ThOO + ThLO);
RQ = sqrt((QxO-LSx)A2+(QyO-LSy)^2); % Length from arm base to Q
Betal = atan2(QyO-LSy,QxO-LSx); % Angle from arm base to RQ
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% Law of cosines: costA) (b^2 + c^2 - aA2)/(21w)
% Apply to find angle between RQ and Link L. I
Num = L1 "2 + RQA2 - L2 A2,
IDen=2 *LlI * RQ.
Il3eta2 = acos4Num/Den);, % Angle from RQ to 1.Ink I
'[hi. 10 =(B~etalI + lBeta2) - (11bOO + ThLO)-, % Theta 1. 1

",I se law of cosines to find the interior angle at the elbow
Num =I,IA 2+1,2 A2 - RQA2-;
D~en=2 *LI *L2-.
BOO =3 acos(NumlDen)-,
ThIiI20 = -(pI-LBeta3);

% RightAnn
IV, [Ihow is right of line (ron.- arm base (shoulder) to Nwiirist) OW1)
IM\ = R() * cos(ThOO + ThRO);,
IZSv = R() *.4inl'i'lOO +11110).
RP~ = sqr-t((PxO-RSx)A2+(Py0-RSyyrA2);, % Length fi-om arm base to P1
lictal =atan2(Py0-RSy.Px0-RSx); % Angle from arm base to RP
% L aw of cosines: cos(A) =(b^2 + CA 2 _ 8A 2)/(2bc)
% Apply to find angle between RP and Link R I
Num = RIA2 + RPA 2 - R2 A2;
Den = 2 * RI * RP-,
l3eta2 =acos(NumfDen)-, % Angle from L.ink RkI to R P
Beta4 =Beta I - (ThO0 + ThRO);
ThR 10 = -(Beta2 - Betat).
Num R RIA2 + R2 A2 - RPA 2;
Den=2 *RI * R2-,
BOO =3 acos(Num/Den);,
'lhR20 = pi - lBeta3.

% Desired Initial State
XO = IThOO;, ThL, 10, ThL2O; ThR 10; ThR2O:. ThPO;, Xc0;, YcO,'...

0;, 0;, 0; 0; 0; 0; 0; 01;

%% Kinetic Energy Test Conditions I%%

% Specify' Payload and Centerbody Initial Rates
% Compatible Rates for the Redundant Coordinates are calculated
if KEFlag

ThPdO = (R2D;. % Rates to specify
XcdO = -0.03;
YcdO = -. 1-
ThOdO = /R2D,

%% LEFT ARM %%

% [Qxd-. Qyd] = [H II*ThOd + [H21*Thd
% Qxd & Qyd are x & y components of point Q inertial velocity.
% Thd = ThlIdot, ThL2dotj
% H matrices are made from expressing the x & y components of Q in
% terms of LO, ThO, ThLO, Li1, ThLl1, L2, and Thl,2.

% Qx=LO*cos(Th0+ThLO)+L I *cos(Th0+rIIlI0+TI. I)+L,2*cos(ThO+...
% ThLO+ThLI+ThL2)
% Qy=L0*sin(Th0+ThL0)+L I *sin(Th0+Thl.O+TrhL I )+L2*sin(ThO+...

% TbLO+ThL1+ThL2)
% The differentiation of these equations lead to
% JQxd;. Qyd] = IH I *ThOd + LH2]*Thd which can he solved for Thd
QxdO = XcdO + LUP ThPdO 'sin(ThPO);,
QydO = YcdO - LcP *ThPdO *cos(ThPO);,

112(1,2) = L2*sin(ThOO+ThLO+ThL I 0+ThL20):.
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112(2.2)= I.2*c~os(TFhUU+'I'hL0+'1'hL 10+1111i20W.
112(2,.1) = 112(2,2) + 1, 1 *cos(Ih(X)+IhI0+Thi, 10).
I1II( 1, 1) = 112( 1, 1) - I 0*sin(Ih)+IhI.),)
111(2,1) = 112(2,1) + I,*cos(fIhOo+'I'hL.0)
]hld()= inv(112) *(1 QxdO: QydOl - i1i*Th~d0):
% ' Angle rates
Hli IdO = Thd0k 1)~
IHi.2d0 = Thd0(2)-,

,!,.% Riciia ARM %%

% l."'he development is similar to the left arm
Px=RO*cos(TIhO+ThRO)+R I*co()' h0+lhR( +liiR I )+R2*cos 1 hO+..

'ThRO+,rhRlI+lThR2)
lly=RO*sin(Trho+ThRO)+R I *sin( I'hO+'Ild0+'IhR I )+RZ2*s II 11+...

ThRO+TliP I +'FhR2)
I% I Pxd-, Pydi IH I1*ThOd + 1H21*Thd

IPxd0 = XcdO - (LP - LcP) *ThPdO *szn(ThPO):,

PvdO = YcdO + (LP - LcP) *ThPdO *cos(TFhP0)-

I1i2(1,2) = -112*sin(Trh0o+ThRo+TrhR10+Th*IR2)
112(,.1) = 142(1,2) - R I*sin(Th0x)+'hRo+ThR I 0Y
112(2,2)= R2*cos(TFhOO+ThRO+ThIR I 0+'IhIR20).
112(2, 1) =112(2,2) + R I *cos(ThOO+ThRO+ThR I10),

I11(1, 1) 1-2( 11) - RO*sin(TFhOO+TFhRO).
If 1(2, 1) =H2(2, 1) + RO*cos(ThOO+ThRO).
FhdO = inv(H2) * ([PxdO;, PydO] I HjI *Th0d0):
%Y Angle rates
ThR I dO = ThdO( I);
,rhR2dO =,ThdO(2);,
xo() =[[OO:, Thl,10:, ThL20-. ThR 10: ThR2O: TrhPO:. XcO: YLO....

Th~do. ThIldO;, ThL2dO; ThR IdO;, 11h2dO. ThPdO:. XcdO:, Ycd~j.
end

%/,% FINAL CONDITIONS %%

% Desired Final Payload Angle
ThPf = atan2(Pyf-QyfPxf-Qxf);

% Left Arm
% Elbow is left of line from arm base to Q (RQ)
1,Sx = LO * cos(ThOf + ThLO);
l.Sv = LO * sin(ThOf + ThLO),
RQ = sqrt((Qxf-LSx)A2+(Qyf-L SV)A 2); % Length from arm base to Q
BletalI = atan2(Qyf-LSv,Qxf-LSx): % Angle from arm base to RQ
% Law of cosines: cos(A) =(bA2 + cA2 - a A2)/(2bc)
% Apply to find angle between RQ and Link LI
Num = LJA 2 + RQA2 - L2^2;
Den =2 *LI * RQ;
lBeta2 =acos(Nurn/Den);, % Angle from RQ to Link I
I'l. If =(BetalI+ Beta2) -(ThOf +ThLO); % Thetal I
% U~se law of cosines to find the interior angle at the elbow
Num = LI ]A2 + L2 A2A - RQA2;
Dcn=2*L1 *L2;
Bcta3 =acos(Num/Den);

Thl,2f= -(pi-Beta3);

% Right Arm
% Elbow is right of line from &rn base (shoulder) to P (wrist) (RP)
RSx = RO * cos(Th~f + ThWO)-,
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RSv = R() * sin(ThOf + ThRO);,
RP = sqrt((Pxf-RSx)^2+(Pyf-RSv)^2)-. % Length frorn aim base Lo I1
Betal = atan2(Pyf-RSy,Pxf-RSx);. % Angle from arm base to RP~
ON 1.aw of cosines: cos(A) = (bA2 +C c2 - a A2)/(2bc)

% Apply to find angle between RP and Link R I
Num = RI1A2 + RPA2 - R2^2,
Den =2 *R I * RP-,
13kia2 = acos(Num/Den)-, % Angle from I ink R I to RP~
Bela4 =Beta I - ('1hOt' + ThRO).
l'hRIf = -(Beta2 - lBeta4Y.,
Num = R I A2 + R2 A2 - R13A 1
D~en =2 *RI * R2.
lBeta3 = acos(Num/Den);,
ThR2f = pi - lBeta3.

% Desired Final State
Xcf' = 0.5 * (Pxt' + Qxf);,
Ycf =0.5 * (Pvf +Qyf);
QfDes = [ThOf;, ThL If;, ThL2f; ThR!f;, ThR.2f;, ThPf. Xcf;. Ycf;...

0, 0; 0; 0; 0-, 0-1 0;, 01;,

if' OutFlag

IN% PROBLEM SUMMARY %%

disp('PROBLEM SUMMARY')
disp(')
disp('lnitial Angles (deg)')
disp('Initial Anguiar Rates (deg/sec)')
disp('Desired Final Angles (deg)')
disp( Theta0 ThetaL I ThietaL2 Thetak I ThctaR2 ThelaP')
disp(XO( I:6)'*R2D)
disp(XO(9: I4)'*R2D)
disp(QfDes( I:6)'*R2D)
disp(')
disp('Payload Coordinates (in)')
dispC' Nominal Initial, Perturbed initial, and Final')
disp(' Qx Qy Px Py')
fableCrd = [QxOn QyOn PxOn PyOn; PertCrd;, Qxl' Qvf Pxf Pyt],
disp(TableCrd)
disp(")
disp('Arm Mounting Locations wrt Centerbodv Coordinate Frame (deg)')
disp(ThLO*R2D)-.disp(ThRO*R2D)
disp(K")
disp('Start- Reference Manuever Stop, & Simulation Stop Times (sec))
disp(T0);disp(TfR);disp(TfC)
disp(")
disp('Controller Status (I = O~n, 0 = Off)')
disp(ContFlag)
dispC')
disp('Perturbation Status (I = On; 0 = Off)')
di*pPertFlag)
disp(")
disp('Centerbody Status in Forward EOM (I =Fixed. 0 =Free)')

disp(AMatFlag)
disp(")
disp('Reaction Wheel Status (I =On;, 0 = Off)')
disp( WheelFlag)
disp(")
disp('Number of Equations in Cost Function Constraint (3, 5 or 8)')
disp(EOMFlag)
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di.'p'Psuedo- Inverse Status (I = On, 0 -Off)')

disp(PInvFlag)
dispC')
d(li'Nonzero Initial Velocity Status (I =On-. 0 =()1I1)')

disp(KEF-Iag)
Nisp(,)

disp'c~iometrv Status 0I = Symmetric; 0) = Nonsvmmetric))
disp(SymFlag)
disp(")j
disp)(1lnverse Kinematics Bypass Status (I = Byvpass:. 0 = I Jsc inv. kinematics)
disprlBvlass)

disp'Torques if Bypass Enabled (0=None, I =One, 2=Two Symmetric)')
disp(TorqFlag)
disp(")
disp('Reaction Wheel Torque Cap Status (I =[nabled. 0=Disabled)')
disp(lorqCap)
ifTorqCap
disp('Limit on Wheel Torque');
disp('lorqMax),

end
disp(C)
disp('Controller G;ains (position and velocit')')
disp( Gpos GveI')
disp(Gains')
disp(")
disp4'Cost Function: J = O.5*(uT*Wu*u + (AT*Lam)T*Wc*(AT*L~am))')
disp(' where _T signifies transpose')
disp('Control Torques Weighting Matrix, Wu')
disp(Wu)
%disp('Constraint Forces Weighting Matrix, Wc')
%dis-p( Wc)

end % End of OutFlag branch

%/% INTEGRATION 0/%/

% "ode" is a variable step size Runge-Kutta integrator function
% supplied with MATLAB. "ode2" is the same as "ode" in its function
% but permits the passing of more variables into and out of the function.
IT,X,Torq,TorqRef,Aqdot.J.Res.LHS,RIIS,DelqI =..

ode2(CEqn2',TO,TfCXO,Tol,Trace,Ls,MsC Ms. ls.l3oundC...
Gains,QtDes,Wu,Wc,Coef,ConstMat);

k = length(T);
Jint =X(:,17:18);
JlntTotal = X(k, 17:18);

if' OutFlag

%% OUTPUT %%

% Angle Histories
n =length(T);

Q X(,1:)
subplot(22 1)
plot(T,Q(:, 1 )*R2D,TQ(:,2)*R2D,TQ(:,3)*R2D...

T,Q(: ,4)*R2D,T,Q(: ,5)*R2D,T,Q(:,6)*R2D):
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hold on
pkot(T(n),QI'Des( I)*R2D,'*,T(n)Qfles(2)*R2D,*.T(n).QDes( 3)*R2D.'*....

T1(n),QtTes(4)*R2D,'*'.T(n),QfDes( 5)*R2D,'*' 'Ii n).QfIe(6 )*R21)*')-
litle(Thetas vs Time');,
xlahel('Time (sec);ylabel('Angles (deg)')-,
hold off
% Angle Rate Histories
Qdot =X(:,9: 14);,
suhplot(223)
plot('.Qdot(: .1)*R2D,T,Qdot(: ,2)*R2D.T.Qdot(:.3 )*'2D....

r1.Qdot(:,4)*R2DTQdot( :,5)*R2D,I',Qdo(:.6 )*RZ21))-;
titiecThetaDots vs Time');
xlahel('Time (sec)');ylabel(CAngle Rates (deg/see)')-.

%Departures from Reference Trajectory
if -iBPass

subplot(222)
plot(T,Delq( 1,: )*R2D,T,Dclq(2,:)*R2DT,Dclq( 3,: )*R2D,...

T,Delq(4,: )*R2D.T,Delq(5,: )*R2D,TJDelq(6,: )R2D);
title('Displacement Errors vs Time');
xiabeJ(TFime (sec)');ylabel('Q-QRef (deg))

end

if MetaFlag
meta main

end
if DocFlag

meta doe
end
pause

% Draw Motion
Angles = Q(:, 1:6);
lXcoord,Ycoordl = Draw3(LsAngConst,Angles,Inter' al).,
if MetaFlag

meta main
end
if DocFlag

meta doc2
end
pause

disp(");
disp('STATE VECTOR TIME HISTORY:');
disp('Angles (deg)')
Table I = [T X(:, 1:6)*R2D];
disp(' Time ThetaO ThetaL I Thetal-2 ThetaR I ThetaR2 Thetat');
disp(Tablel)
pause

disp(");
disp('Angle Rates (deg/sec)')
Table2 = T Qdot(:,I:6)*R2DI;,
disp(' Time ThOdot ThL ldot Thb2dot ThR Idot ThR2dot ThPdot');
disp(Table2)
pause

if -By Pass
disp(');
disp('TRAJECTORY ERROR TIME HISTORY');
disp('Angles (deg)')
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l'able2a = IT R2D*D~elq(1:6,:YJ;-
dispC' Time DeIThO DeIThl, I DeIThL2 i)ci~rhR I LDelIiR2 IDelThP'),
disp(Table2a)

end
pause

"% Reference T'orque Histories

iI'M R>(

Ir~sl = size(TorqRef')-
lorqRef = [TorqRef zerosts, 1)1,
TRef=I(:) TfRj;,

else
,[Ref =T-

end
suhplot(22 1)
plot(TRef,TorqRef);,
tiule('Reference Torques vs Time');
xlabel(Time (sec)')-;ylabel('Reference Torques')-.

end
% Command Torque Histories
%T')'orq = [Torq, zeros(4, 1)1-,
kz~n.
suhplot(223)
plot(T( 1:k)',Torq);,
title('Command Torques vs Time');
xlabel('Time (sec)');ylabel('Command Torques')-.

% Cost Function
suhplot(222)
plot('f,J(l ,:)),title('Cost vs Time'),

subplot(224)
plot(T,Jlnt)-;title('Integrated Cost vs Time');
xlahel('Time (sec)');ylabel(JInt');,
if MetaFlag

meta main
end
if DocFlag

meta doc3
end
pause

if TfR > 0
disp(")
disp(REFERENCE TORQUE HISTORY');
if WheelFiag

disp(' Time UO ULS ULE ULW URS IJRE IJRW'),
else

disp(' Time ULS ULE ULW IJRS IJRE IJRW');
end
Table4 =[TRef TorqRefi;
disp(Table4)

end
pause
disp(")
disp('COMMAND TORQUE HISTORY');
if WheelFlag

disp(' Time UO ULS ULE ULW URS LiRE URW');
else
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disp(' Time ULS ULE ULW I IRS URE I JRW');,
end
Table5 =[T(I:k) Torq]J;
disr{Table5)
pause

Tiahe6 = {T(I:k) J(l,:y Jint);
disTK')-,
disp(COST FUNCTION HISTORY');
dispM' Time J JIntAbs JlntSqr);
disrATable6);,
pause

%, Angular Momentum
k = length(T);
f'or n = L k

IIl AngMo(Ls,Ms,CMsJs,X(n, l:8),X(n,9: 16));,
if n I

H!1 list Hs,
else

IIl-list = flHist; I-sj;
end

end
eig

plot(T,H4Hist(:. I :6));title('Angular Momentum of ieces vs Time');
xlabel(Timne (sec)');,ylabelC'Ang Momentum (N-rn-ec )'):.
suhplot(223);,
plot(T,HHist(:,7));title('TotaI Angular Momentum vs Time');
xlabel('Time (sec)');ylabel('Ang Momentum (N-m-sec)'),
% Kinetic Energy
form = L~k
if AMatFlag

[M,G,A,Adot,Bi = MatxFix(Ls,Ms,CMs.Is.X(m,1I:8)XX(m,9:1I6),AngConst);
else

[M,G,A,Adot,B] Matx(Ls,Ms,CMs,Is,X(m,l :8),X(m,9: 16),AngConst);
end
LH-STot(m) =0;
RI-ISTot(m) =0;
ResTot(m) =0;
for n=1:8

LHSTot(m) = LHSTot(m) + LHS(n,m)-;
RHSTot(m) = RHSTot(m) + RHS(n,m);

end
ResTot(m) =LHSTot(m) - RH-STot(m);
KE(m) = 0.5*X(m,9: 16)*M*X(m,9: 16)';

end
subplot(224)
plot(TKE);title('Kinetic Energy vs Time');,
xlabel('Time (sec)');ylabel('KE (kg mA2IsA2)#);,
% Compare wheel torque to change in total angular momentum
I Id =J(2,:)';
subplot(222)
plot(T( I:k)',Torq(l ,:),T( I:k)',H-d);
title('Compare Wheel Torque to Change in Ang. Mom.');
xlabel('Time (sec)')-,
pause
if MetaF lag

meta main
end
if DoeFlag
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mcta doc4
end
%,pause

clg
subhplot(22 1)
plot(l',Res);titlc('Residuals of Equations')-\labcl('T'ime (sec)');ylabel('L1 IS,-1d iS').
suhplot(223)

~lot(''Resot).title('Total Residuals').
xlabel('Time (sec)').ylabel('LlS-RHS').
94, Constraints: see if A*Qdot = 0 is satisfied
subplot(222)plot('[( I : k).Aqdot( I ,: ),T( I :k),Aqdot(2,: ).T( 1k k).Aqdolt 3. ) ....
T( I :k),Aqdot(4,:)),

I dun i ,dum2l = size(Aqdot),
if dum 1 ==5
hold on
plot(T( I :k),Aqdot(5,:));
hold off

end
litle('Constraints: A*Qdot vs Time'),
xlabel('Time (sec)');ylabel('A*Qdot');
if MetaF lag
meta main

end
if DocFlag

meta doc5
end
pause

end % End of OutFlag branch

i. Martx

% Filename is 'Matx.m'
% This routine calculates the matrices for the dual arm
% spacecraft EOM when it is grasping a payload. Each arm
% has two links. This version assumes that the centcrbody
% is NOT fixed. This impacts A and Adot.

function [M,G,A.Adot.B = Matx(Ls,MsCMsls,ThsThdots.AngConst)

% OUTPUTS:
0/6 M = 8x8 mass matrix
% G = 8x I vector with coriolis and centripetal terms
% A = 4x8 constraints matrix
% Adot = 4x8 derivative of constraints matrix
% B = Control influence matrix

% INPUTS:
% Ls = 7x I vector of lengths (in)
% 1st K -nent = distance from origin to left arm mount
% 2nd 3rd elements wrt left arm (from shoulder to wrist)
% 4th element = payload length
% 5th & 6th elements wrt right arm (from wrist to shoulder)
% 7th element = distance from right arm mount to origin
% [LO; LI; L2; LP; R2; RI; RO
% Ms = 6x I column vector containing the masses (kg)
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% I st element = mass of spacecraft centerbo ly
% 2nd & 3rd elements left arm (upper then lower arm)
% 4h & 5th elements - right arm (upper then lower arm)
% 6th element = payload mass
% JMO; MLI, ML2, MR I; MR2; MPI
% CMs = 6x I column vector containing center of mass locations (m)
% ~jcO. LcLl LcL2, LcRi L cR2; LcPI
I% Is = 6x I column vector containing the moments o inertias
% about the respective body's center of mass I kg m"2)
% Ist element = inertia of spacecraft centertb/d
%I 2nd & 3rd elements = left arm (upper then lower arm)
IV, 4th & 5th elements = right arm (upper then lower arm)
% 6th element = payload inertia
IN lO. IL 1 11.2; IR I ,R2, ll1
% 'Ths = 6 element vector containing the angles which describe
V the configuration of the system.
% [ThO; ThL I, ThL2; ThRI i ThR2, ThP1
% Thdots = 6 element vector containing the angle rates
% AngConst = 2 element vector of arm mounting locations
% [ThLO; ThROl

IV, 0/0%%%%%%%%%%%%%%%%%%°0A,0/oA,"/11/111/%%,%

%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
',%%%%0/%%%%%%0/%%%%%0/%%%%%0%%%0/0%%%
% Lengths (in)
,0 = ls(i),

L, I = Is(2);
.2 = Ls(3);

IP = Ls(4);
R2 = Ls(5);
R I = Ls(6);
RO = Ls(7),

% Member masses (kg)
MO = Ms(l);
ML I = Ms(2);
ML2 = Ms(3);
MR I = Ms(4);
MR2 = Ms(5);
MP = Ms(6);

% Center of mass distances (in)
LcO = CMs(J):
IcL I = CMs(2).
l.cL2 = CMs(3);
I.cRI = CMs(4);
lcR2 = CMs(5);
I.cP = CMs(6); %measured from left end

% MOI about center of mass
10 = Is(l);
IL 1 Is(2);
IL2 = Is(3);
IRI Is(4);
IR2 Is(5);
IP = s(6);

% Angles
ThO = Ths(i);
ThL I = Ths(2);
ThL2 = Ths(3);
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[hR I = Ths(4);
ThR2 = T'hs(5);

'% Angle Rates
Thud =,hdots( I);
rhI. I d -Thdots(2),
Thl,2d Thdots(3);
ThRlId =Thdots(4)-;
ThR2d = Thdots(5)-.
l'hPd =Tbdots(6)-;

%Y Arm mount locations
ThI.( = AngConst( I).
ThlRO = AngConst(2);l

%!,% Mass Matrix %%

M = zeros(8,8);
M(8,8) =MR,
M( 7.7) =MP;
M(6,6) =IP;,
M(5,S) = IR2 + MR2*LcR2A2-.
M(5,4) =M(5,5) + MR2*RI *LcR2*cos(ThR2):.
M(4,5) =M(5,4);l
M(5, 1) = M(4,5) + MR2*RO*LcR2*cos(ThR I +ThR2);
M(1,5) =M(5, I),
M(4,4) =M(4,5)+IR I +MR2*R I *LcR2*cos(,riR2)+MR I *I.cR I A2+MlR2*IR 1 A2-

M(4, 1 )=M(4,4)+RO*(MR I *LcR I +MR2*R J )*cos( [IhR I )+MR2*RO*I .cR2*...
cos(ThR I +ThR2);

M(1,4) =M(4,lI);
M(3,3) = 1L2 + ML2*LcL2 A2;
M(3,2) =M(3,3) + ML2*L I *LcL2*cos(ThL2).,
M(2,3) =M(3,2)-,
M(3, I) =M(3,2) + ML2*LO*LcL2*cos(ThL I +ThLl2);,
M(1,3) =M(3,l1);
M(2,2) =M(3,2)+ML2*L I *LcL2*cos(Th12)+IL I +Ml, I *L~cL I A2+ML2*L I A 2;
M(2,1I)=M(2,2)+LO*(ML I *LcL 1+ML2*L I )*cos(TbL I )+ML2*LO0*l.cl,2*...

cos(ThL I +ThL2);
M0I,2) =M(2, I);
Part I = IO+M(2,2)+M(4,4)+MO*LcOA2+(MI, I +ML,2)*LO(A 2+(MR I+MR2 )*ROA2;
Part2 = 2*LO*(ML I *LcL I +ML2*L I )*cos(ThL I )+2*ML,2*LO*~c 12* ...

cos(ThL I +ThL 2),
Part3 =2*RO*(MR I *~LcR +MR2J*R.1 )*cos(ThR I )+2*MR2*RO*L~cR2* ...

cos(ThR I +ThR2);
M(,) =PartlI + Part2 +Part3;

%%%0%%

G = zeros(8,I1);
Pt I = -Lo*(TbL I d A2+2*ThOd*ThL Id)*(ML I*LcL I+ML2*Ll1)*sin(ThI I);
Pt2 = ML2*L I*LcL2*ThL2d*(2*ThOd+2*Thl I d+ThL2d)*sin(ThI .2).,
Pt3=-ML2*LO*LcL2*(2*ThOd*(ThL Id+ThtL2d)+CrhI.I d+ThL2d)A 2)*...

sin(TbL l+ThL2),
Pt4 = -RO*(ThR I d A2+2*ThOd*ThR ld)*(MR I *[ I +MR2*R I)*sin(lIhR I);
Pt5 = -MR2*R I *LcR2*ThdR2d*(2*Th~d+2*ThR I d+ThR2d)*sin(ThR2);,
Pt6=-MR2*RO*LcR2*(2*ThOd*(ThR Id+ThR2d)+(ThR Id+ThR2d)A 2)*...

sin(ThR I +ThR2);
G(I) =PtI +Pt2 + PO +P(4 +PtS +Pt6;,
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Pi I = LO*ThOd A2*(ML I *LcL I +ML2*L I )*sin(Tl 1).
Pt2 = -ML2*L I *LcL2*ThL2d*(2*Th~kd42*ThL I d+ThL2d)*sin( ThL2).
1113 = ML2*LO*LcL2ThOd^2*sin(ThL I +ThL2);,
(;(2) =Pt I + Pt2 +Pt3;,
(4(3) =ML2*Lcl,2*(L, I *(ThOd+ThL ld)A2*snrhIll 2)+I .o*ThiidA2*

sin(Tl lI +ThL 2));,
Ilt I = RO*ThOd A2*(MR I *LcR I +MR2*R I )*sin( IhR 1).
Plt2 = -MR2*R I *LcR2*ThR2d*(2*Th~~J+2*lIhl~ 1d+'IhR2d)*sin( T'hR2),
PO3 = MR2*RO*LcR2*ThWdA2*sin(ThR I +'rhR2).
G(4) =Pt I + P(2 +Pt3,
(5() = MR2*L~cR2*(R I *(hd+h I d)A 2*sin 'rhRI2)RO*I'hodA2*

sin(ThR I +ThR2))-;

%/% Constraints Matrix %%

% The constraint matrix comes from putting the constraint equations
% into the Pfaffian form: A*qdot + AO = 0. The first two constraint
'Y equations are found by finding the x and v components of the
% Pay load's center of mass by starting at the origin and moving
% up the left arm. The second two constraint equations find the x
% and y components of the Payload's center of mass by starting at the
%/ origin and moving to the base of the right arm and then
% up the right arm. Differentiating these equations result,;
% in the Pfaffian form with AO = 0.
A =zeros(4,8);,

A(2,8)= -I
A(3,7)= -!;

A(4,8)= -I
A( 1,6) =-l.cPsin(ThP),

A(2,6) LcP*cos(,rhP);,
A(3,6) (LP-LcP)*sin(*rhP);,
A(4,6) -(LP-LcP)*cos(ThP);
A(4,5) R2 *cos(ThO+ThRO+ThR I+ThR2);.
A(4,4) A(4,5) + R I*cos(ThO+ThRO+ThR I)-,
A(4, 1) =A(4,4) + RO*cos(ThO+ThRO).
A(3,5) = R2*sin(ThO+ThRO+ThR I -+ThR2):.
A(3,4) =A(3,5) - R I*sin(ThO+ThRO+ThR I)-,
A(3, I) =A(3,4) - RO*sin(ThO+ThRO);,
A(2,3) =L 2*cos(ThO+ThLO+ThLlI+ThL2);
A(2,2) =A(2,3) + L I *cos(ThO+ThLjO+ThdL 1),
A(2, 1) =A(2,2) + 1LO*cos(ThO+ThLO),
A( 1,3) =-L2*sin(ThO+ThLO+ThL 1 +ThL2)-.
A( 1,2) =A( 1,3) - L I *sin(ThO+ThLO+ThL 1)-.
A(, 1) =A( 1,2) - LO*sin(ThO+ThLO);

Adot = zeros(4,8);
Adot( 1,6) = -ThPd*LcP*cos(ThP);,
Adot(2,6) = ThPd~LcP*sin(ThP),
Adot(3,6) = ThPd*(LP-LcP)*cos(ThP);
Adot(4,6) =ThPd*(LP-LcP)*sin(ThP),
Adot(4,S) = -(ThOd+ThR Id+ThR2d)*R2*sin(Th4+ThRO-+ThR i+TrhR2);,
Adot(4,4) = Adot(4,5) - (ThOd+ThR Id)*R I *sin(ThO+ThRO+ThR I)-.
Adot(4, I) = Adot(4,4) - ThOd*RO*sin(ThO+ThRO);,
Adot(3,5) = -(ThOd+ThR ld+ThR2d)*R2*cos(Tho+TrhRO+ThR I +TiR 2);
Adot(3,4) = Adot(3,5) - (ThOd+ThR ld)*R 1*cos( flio+ThiRO+TrhR I)-,
Adot(3, 1) = Adot(3,4) - ThOd*Ro*cos(TrhO+TbRO);
Adot(2,3) = -(ThOd+ThL I d+ThL2d)*L 2*sin('Tho+ThLo+,rhL I +ThL2);
Adot(2,2) = Adot(2,3) - (ThOd+ThL I d)*L I *sin(ThO+ThLO+ThL 1);
Adot(2,I) =Adot(2,2) - ThOd*LOsin(ThO+ThLO);,
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Adot(1,3) = -(ThOd+Thl. i d+rhl,2d)*L 2*cosiTho+lhlI0Thi.] +Thl.2),
Adot(1,2) = Adot(1,3) - (Th0d+ThL ld)*l, I *cos(ThO+lllAl+Thl I ).
Adot( 1,1 ) = Adot(1,2) - ThOd*LO*cos(ThO+ThLO).

Y%%%%%
%% IB %%
%VQ,%%%%

13 = zeros(8,6).
13(,3) = -I:
13(1,6) =-1
13(2.1)= I
13(2,3)'= -1
13(3.2)= I

(3.3)= -1
13(4,4)= 1,
[3(4.6) = -I:
13(5,5) = I,
13(5,6) = -I 1
13(6,3) = 1,
B(6,6) = I,

J. MatxFix

% Filename is 'MatxFix.m'
% This routine calculates the matrices for the dual arm
% spacecraft EOM when it is grasping a payload. -ach arm
% has two links. This version assumes that the centerbody
% is fixed. This impacts A and Adot.

function [M,G,A,Adot,BI = MaLx(Ls,Ms,CMsls,Ths.hdotsAngConst)

% OUTPUTS:
% M 8x8 mass matrix
% G = 8x I vector with coriolis and centripetal terms
% A 5x8 constraints matrix
% Adot = 5x8 derivative of constraints matrix
% B = Control influence matrix

% INPUTS:
% Ls = 7x I vector of lengths (m)
% 1st element = distance from origin to left arm mount
% 2nd & 3rd elements wrt left arm (from shoulder to wrist)
% 4th element = payload length
% 5th & 6th elements wrt right arm (from wrist to shoulder)
% 7th element = distance from right arm mount to origin
% [LO; L I ;L2, LP; R2; RI; RO1
% Ms = 6x I column vector containing the masses (kg)
% I st element = mass of spacecraft centerbody
% 2nd & 3rd elements = left arm (upper then iower arm)
% 4th & 5th elements = right arm (upper then lower arm)
% 6th element = payload mass
% [MO; ML i; ML2; MR i; MR2; MPI
% CMs = 6xI column vector containing center of mass locations (m)
% [LcO: LcLI; LcL2; LcRI; LcR2; LcPI
% Is = 6x I column vector containing the moments of inertias
% about the respective body's center of mass (kg m^2)
% I st element = inertia of spacecraft centerbody
% 2nd & 3rd elements = left arm (upper then lower arm)
% 4th & 5th elements = right arm (upper then lower arm)
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% 6th element =payload inertia
% [10; ILI, 1L2; IRI1;1R2; IP]
% Ths =6 element vector containing the angles which describe

% the configuration of the system.
"/ IThO; TrhL I T'hL2, ThR I .,ThR2-. Thl"I

% Thdots -6 element vector containing the angle rates
% AngConst = 2 element vector of ann mounting It cations

IV IThLO; ThROJ

'Y% CONVERT INPUTS FROM ARRAYS To SCAL.ARS %%

'Y Lengths (in)
1,0 Ls(l);
LI 1 =Ls(2)-;
1,2 = Ls(3);,
LP =Ls(4);,
R2 =Ls(5);
R I =Ls(6);,
ZO= Ls(7);

% Member masses (kg)
MO = Ms(l);,
MI, Il Ms(2);
ML2 = Ms(3);
MR I =Ms(4);,
MR2 = Ms(5);,
MP = Ms(6);

% Center of mass distances (in)
LeO = CMs(l);
LeL I = CMs(2);
l~cL2 = CMs(3);
LcR I = CMs(4)-.
LcR2 =CMs(5);
LcP = CMs(6);, %measured from left end

% MOI about center of mass
It)= Is(l);
1L, 1 1 s(2)-,
1L2 =Is(3);,

IR I -Is(4),

1R2 =Is(5);

IP = Is(6);

% Angles I
'[hO = Ths(l);
ThL, I = Ths(2);
ThL2 = Ths(3);
ThR I = Ths(4);
ThR2 = Ths(5);
ThP = Ths(6);

% Angle Rates
ThOd =Thdots(1);
ThL I d =Thdots(2);
TIhL2d =Thdots(3);
ThR Id = Thdots(4),
ThR2d = Trhdots(5);
ThPd = Thdots(6);
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l%( Arm mount locations
ThIAJ = AngConst( 1);
ThR() = AngConst(2).

41% Mass Mainx %%

M = zeros(8,8);
M(8,8) =MvlW
M(7,7) =MR,;
M(6.6) = IP;,
M(5,5) =1R2 + MR2*LcR2A2;,
M(5,4) =M(5,5) + MR2*R I*LcR2*cos(T'hR2).
M(4,5) =M(5,4)-,
M(5, 1) =M(4,5) + MR2*RO*LcR2*cos(TrhR I +'I'R2)-:
M(l.5) = M(5,I1);
M(4,4) =M(4,5)+IR I +MR2*R I *l~cR2*cos(i'lhR2)+MR 1*1 cR1I A 2+MR 2*R I ̂ 2-1
M(4, )=M(4,4)+RO*(MR I *LI~ +MR2*R I )*co(l'hR I )+MR2*RZO*I.cRZ2*..

cos(ThR 1 +ThR2)-
M(1,4) = M(4, I);
M(3,3) = L2 + ML2*LcL2 A 2-
M(3,2) =M(3,3) + ML2*L I *LcL2*cos(ThL2)-:
M(2,3) =M(3,2),
M(3. 1) =M(3,2) + ML2*LO*Lcl.2*cos(Thll 1IhL2).
M(1,3) =MO3,I);
Mv(2,2) =M(3,2)+ML2*L 1 *LcL2*cos(ThL2)+Il. I +ML I *LcI. I A 2+MI.2*1.I 2.
M(2,1I)=M(2,2)+LO*(ML I *LcL I +ML2*L I )*co('BflL I )+ML2*LO*I .cL2*...

cos(ThL I +ThL2);
M( 1,2) =M(2, 1);
Part I =1O+M(2,2)+M(4,4)+MO*LcOA2+(Ml I +MI .2)*I OA 2+(MR I+MRZ2)*RO 2-,
Part2 =2*LO*(ML I *LcL I +ML2'L I )*cos(1'hI 1 )+2 *ML2*1LO*1,cL.2*.

cos(ThL I+ThL2);,
Part3 =2*RO*(MRI1 LcR I+MR2*RlI)*cos(ThRlI)+2*MR2*RO*LcR2*...

cos(TbR I +ThR2);
MO,.1) =Part I + Part2 +Part3,

%% G %%

G(= zeros(8, 1);
Pt I = .LO*(ThL I d A2+2*ThOd*ThL I d)*(ML I *jI, I +ML.2*L I )sin(ThL. 1);
Pt2 = ..ML2*L I *LcL2*ThL~d*(2*Th~d+2*Thl, I d+Thl.2d)*sin(Th. .2)-.
P13=.ML2*LO*LcL2*(2*ThOd*(ThI I d+ThL2d)+(ThLii I d+IThl 2dY'2)*...

sin(ThL I +ThL 2);
Pt4 = .RO*(ThR I dA2+2*ThOd*ThR I d)*(MR 1 *1 cR I +MR2*R j )*sln(TR I)-,
Pt5 = -MR*R I *LcR*ThR2d*(2*Th~~J+2*ThR Id+Th2d)*sin(ThR2);
Pt6=-MR2*RO*LcR2*(2*ThOd*(ThR Id+ThR2d)+(TbRI d+ThR2d)A 2)*...

sin(ThR I +ThR2);
GI) = Pt I + Pt2 + PO +Pt4 +Pt5 +Pt6,
Pt I = LO*ThOd A2*(ML 1 *LcL I +ML2*1 I )*sin(l'hl -I)-.
Pt2 = -ML2*L I *LIcL2*ThI2d*(2*ThOdJ+2*ThL I d+T'hL2d)*sin(Thl 2)-.
IPt3 = ML2*LO*LcL2*ThOd A2*sin(ThL 1+ThL2);
(2) =PtI +9-Pt2 +Pt3;

G'(3) =ML2*LCL2*(L I *('fl~()iJhLj I dyr2*sin(ThL2)+LO*ThOd A2*..
sin(TbL I +ThL2));

Pt I =RO*ThOd A2*(MR I *LcRI +MR2*R 1 )*sin('rhR 1)'.
Pt2 = -MR2*R I *LcR*ThR2d*(2*ThOJ+2*ThR I d+TIhR2d)*sin IiR2).
Pt3 = MR2*RO*LcR2*ThOd A2*sn(TFhRlIhR2).
GT(4)=Pt I +Pt2 + PO,
G(5) = MR2*LcR2*(R I *(ThOdJ+Th I d )A 2*sin(TbR2)+RO*T~d A 2*..

sin(ThR I +TbR2));
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%% Constraints Matrix %%

% The constraint matrix comes from putting the constraint equations
%, into the Pfaflian form: A*qdot + AO = 0. The fIrstm twvo constraint
% equations are found by finding the x and v components of the
0%~ Pay load's center of mass by starting at the origin and moving
% up the left arm. The second two constraint eoquations find the x
0/t, and v components of the Payload's center 01 mass by starting at the
"' origin and moving to the base otf the right arm and then
% up the right arm. Differentiating these equations results
1/ in the Pfaffian form with AO = 0.
A = zeros(S,8)-,
A(5.1)= L
A(1,7) -I-

A(3,7) - 1
A(4,8)= -I1,
A( 1,6) = -LcP*sin(ThP);
A(2,6) = LcP*cos(ThP);,
A(3,6) = (1,P-IcP)*sin('rhP)y
A(4,6) = -(LP-LcP)*cos('ThP);,
A(4,5) = R2cos(ThO+ThRO+TrhR I +ThR2),
A(4,4) = A(4,5) + R I *cos(ThO+'rhRO+ThR 1),
A(4, 1) = A(4,4) + RO*cos(ThO+ThRO);,
A(3,5) = -112 sin(Th0+ThRO+ThR I+ThR2),
A(3,4) =A(3,5) - R I*sin(Th0+ThRO+ThR I)-,
A(3, 1) = A (3,4) - ROsin(ThO+TrhRO),
A(2,3) = L2*cos(TrhO+ThLO+ThL I+ThL2).
A(2,2) = A(2,3) + L I *cos(Th0+ThLO+ThL 1 ).
A(2, 1) = A(2,2) + LO*cos, rh0+ThL0)-,
A( 1,3) = L2*sin(ThO+ThL0+ThL I +TlIL2),
A(1,2) = A(1,3) - L I*sin(,ThO+ThLO-+ThL I);
A( 1,1) = A( 1,2) - LO*sin(ThO+ThLO);,

Adot = zeros(5,8)-,
Adot( 1,6) = ThPd*LcP*cos(ThP);,
Adot(2,6) = T'hPd*LcP*sin(ThP);
Adot(3,6) -ThtPd*(LP-LcP)*cos(ThP);
Adot(4,6) =ThPd*(LP-LcP)*sin(ThP)-,
Adot(4,5) - (ThOd+ThR Id+ThR2d)*R2*sin(Th0+ThR0+T'hR I +ThR2)-.
Adot(4,4) =Adot(4,5) - (ThOd+ThRld)*RlI*sin(Tli0+T'hR0+ThR I)-.
Adot(4, 1) -Adot(4,4) - ThOd*RO*sin(Th0+TIhRO);.
Adot(3,5) =-(ThOd+ThR I d+ThR2d)*R2*cos(Th0+ThRO+T'hR I +ThR2)-;
Adot(3,4) -Adot(3,5) - (ThOd+ThRld)*R I *cos(TrhO-ThRO+ThR I)-,
Adot(3, I) -Adot(3,4) - Th~d*RO*cos(Th0+ThR0)-.
Adot(2,3) =-(TbOd+ThL I d+ThL2d)*L2*sin(ThO+ThI .0+Thi. I +TllI2);,
Adot(2,2) -Adot(2,3) - (ThOd+ThL Id)*L I *sin(hio+TrhlO+TrhL 1).
Adot(2, I) -Adot(2,2) - ThOd*LO*sin(Th0+'rhL0)-.
Adot( 1,3) -- (ThOd+ThL I d+ThL2d)*L2*cos(ThO+T'h[O+ThL, I +ThL2)-,
Adot(1,2) =Adot(1,3) - (ThOd+ThL Id)*L I *cos(Th0+ThL0+ThL I)-,
Adot(I,I) -Adot(1,2) - ThOd*LO*cos(Th0+ThL0)-.

%% B %%

B = zeros(8,6),
B(1,3) -1,
B(1,6)-1;
B(2,1)= I-,
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11(2,3) - I
1 (3,2 ) = 1*
1I(33) = -I
B(44)= 1.
11(4,6) = -I,
13(5,5) = I,
11(5.6) =-1,
1 (6,3) =I;

13(6,6) I,

K. Ref2

F ilename is 'Rel2.m'
Reference Maneuver using cost function

% I his routine assumes that the -pacecraft centerbodv is held fixed.

function lIorques,.QRcfQdotRef.AqdotJ,C i,C2,C3 = ...
Ref2(Ls,Ms,CMs,ls,BoundC,T,Wu,WcCo¢ef,ConstMat)

% OUTPUTS:
% Torques = 7x I column vector of torques that should be applied at

time r if the motion is to follow the reference tralector'
exactly. The vector is arranged as IUO: UL.S . ll,.W: URS. IJRI-E. URWJ
which are the centerbody torque followed hy the torques at the
shoulder, elbow, and wrist of the left arm and then the right arm

0% respectively.
% QRef = 8x I column vector of rec'rence generalized coordinates
% QdotRef = 8x I column vector of reference generalized velocities
% Aqdot = 4x I or 5x I column vector (depends on status of AMatFlag) which
I yo check to see if the constraint equation A*Qdot = ( is satisfied
% J = scalar value of the reaction wheel torque absolute value. This
0/4 number will be integrated to find the value lor the cost function.
% Lvapunov Controller matrices (reference Iraiectorv values)
% C I = 8x7 matrix
% C2 = 8x4 or 8x5 (depends on status of AMatFlag) matrix
% C3 = 8xi matrix

1/o INPUTS:
% 1 .s = 7x I vector of lengths (m)
% I st element = distance from origin to left arm mount
%/ 2nd & 3rd elements wrt left arm (from shoulder toward wrist)
% 4th element = payload length
% 5th & 6th elements wrt right arm (from wrist toward shoulder)
% 7th element = distance from right arm mount to origin
% 110 L ; -L2, LP; R2; R 1; ROI
% Ms = 6x I column vector containing the masses (kg)
% 1st element = mass of spacecraft centerbody
% 2nd & 3rd elements = mass of left arm (upper arm then lower arm)
% 4th & 5th elements = mass of right arm (upper arm then lower arm)
"/0 6th element = payload mass
% [MO; MLI; ML2; MRI; MR2; MPI
% CMs = 6x I column vector containing center of mass locations
%Y0 [LcO; LcL I ; LcL2; LeR I; LcR2; LeP I
% Is = 6x I column vector containing the moments of inertias about the
% respective body's center of mass (kg m^2)
% I st element = inertia of spacecraft centerbodv
0/ 2nd & 3rd elements = inertia of left arm (upper arm then lower arm)
% 4th & 5th elements = inertia of right arm (upper arm then lower arm)
% 6th element = payload inertia
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% loundC = boundr'y conditions for the problem. The first column
contains the initial x and y component of points Q & P
re-spectively, the x component of the right ann base, the

I, problem start time, and the simulation stop time. Hih second
01column contains the x and y component of points Q & 1)

'!/ respectively, the x component of the right ann base, the
0/ stop time for the ideal reference maneuver. and a flag to
"' activate or deactivate the controller. Thle origin for the

x and y components is the base of the left arm.
T time

11,Wu =6x6 or 707 control torque cost weighting matrix
We=8x8 constraint cost weighting matrix

(.oef (n-2)xlI column vector of reference polynomial coefficients
0, beginning with order n coefficient

'N ConstMat =3x(n-2) matrix of coefficients for reference displacement
,N (row 1), velocity (row 2), and acceleration (row 3)

IN%/ CONVERT INPUTS FROM ARRAYS TO SCALARS %%

)/ Lengths (in)
L,0 =l's(l);
1, 1 = Ls(2);
L,2 = Ls(3);
L.P = Ls(4);
R2 = Ls(5):
R I =Ls(6)-,
R0) Ls(7);

% Member masses (kg)
MO = Ms(l);,
ML I = Ms(2),
ML2 = Ms(3);
MR I = Ms(4);,
MR2 = Ms(5);
MP = Ms(6),

% Center of mass distances (in)
L~cO = CMs(l).
I cL I = CMs(2);
I..;L2 = CMs(3);,
JLcR I = CMs(4);
LcR2 = CMs(5);
LcP = CMs(6); %measured from left end

% MOI about center of mass
10 =Ils(l);
1I, 1 = Is(2);
11,2 = I s(3),
IR I =1s(4);
1R2 = Is(5);
IP =1s(6);

% Initial and final locations of third link
% Point Q is at Node 3 (joint between Links 2 & 3)
% Point P is at Node 4 (joint between Links 3 & 4)
QxO =BoundC( 1,1); QyO=BoundC( 1,2);,
PxO=BoundC(2,l);, PyO=BoundC(2,2);
Qxf='BoundC(3,l); Qyf=BoundC(3,2)-,
Pxf =BoundC(4, I); Pyf =BoundC(4,2);,
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%Arms mount locations wrt spacecraft centerhodv coordinate frame (rad)
'1111, = BoundC(5, 1); '1hR1 = 13oundC(5,2).

Reference Maneuver Start and Stop Times
1'0 = lBoundC(6,lI); Tf = lBoundC(6,2);

%Constraints Matrix Flag
AMat1ilag = BoundC(8,I)-,

"I1 Centerbody' Reaction Wheel Flag
WheelFlag = BoundC(8,2);

"I) Centerbodv Initial and Final Co iditions
Th() lBoundC(9, I).
ihOf =BoundC(9,2),

'N Number of equat~ons in the cost function constraint equations
I OMFlag = BoundC(1O, I);

'%/ Psuedo-Inverse Flag
P~nvFlag = BoundC(IO,2);,

%% PRELIMINARY CALCULATIONS %%

R213 = I 80/pi;, % Conversion from radians to degrees

% Total rotation of Payload
ThPO =atan2(Pyo-QyO,Pxo-Qxo); % Initial angle of Payload (rad)
ThPf =atan2(Pyf-QyfPxf-Qxf); % Final angle of Payload (rad)
lDelThP = ThPf - ThPO; % Total delta angle of Payload (rad)

% Initial and final locations of Payload center of mass
XPO = QxO + (PxO - QxO) * (LcP/LP);,
YPO =QyO + (PyO - QyO) * (LcP/LP);
XPf = Qxf + (Pxf - Qxf) * (LcP/LP);
YPf =Qyf + (Pyf - Qyf) * (LcPILP);

Tau = (T-TO) / (Tf-TO);, % Normalize time

% Function Weighting Factors for how the pay load will move
% These factors will cause the velocity and acceleration of
% the payload coordinates to be zero at t = 0 and t = tf.
% They also permit the displacements for the payload coordinates
% to match their initial and final values. These weighting
% factors will also apply to the centerbody rotation.

k = length(Coef)-,
for n=1: k
CTau(k+ I-n) = Coef(k+l -n)*Tau^(n+2)-,
CTaud(k+I -n) =Coef(k+ I -n)*TaUA (n+ I);
CTaudd(k+l -n) = Coef(k+I -n)*TaUA (n);

end
% Weighting factors
W =ConstMat(l,:)*CTau';,

Wd =ConstMat(2,:)*CTaud';

Wdld ConstMat(3,:)*CTaudd';

% Centerbody angle, angular velocity, angular acceleration
DeIThO = ThOf - ThOO;,
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ThO = ThOO + W * DeIThO-. % Angle (rad).
['hOd = Wd * DeIThO / MT - TO);, % Velocity (rad/sec I
"rhOdd =Wdd * DeIThO / (Tf - TO)A2; % Accelerat ion frad/sevA2X
'!/TIhO 0
'YThOd =0-,

%ThOdd 0-,I
4Save for plotting

QRef(l) = ThO;,
QdotRef( 1) = ThOd.
QddotRef( I) = ThOdd.

% Payload angle, angular velocity, angular acceleration
Tlh' = ThPO + W * DeIThP;, % Angle (mad)
TFhPd = Wd * DcIThP /(Tf - TO); % Velocity (rad/see)
Tlhrdd =Wdd * DeIThP / (Tf - TO)A2;, % Acceleration (rad/eCCA 2)

%Save for plotting
QRef(6) = ThP;,
QdotRef(6) =ThPd;

Qddodlef(6) =ThPdd;

%/( Payload center of mass position, velocity, and acceleration
XC = XPO + W * (XPf - XPO);
Xcd =Wd *(XPf -XPO) /(Tf -To);
Xcdd = Wdd * (XPf - XPO) / (Tf - TO)A2,
Yc= YPO + W*(YPf - YPO);
Ycd = Wd * (YPf - YPO) /(Tf -TO),
Yedd = Wdd * (Y~f - YPO) / (Tf - TO)'2;
%/ Save for plotting
Qllef(7) = Xc;,
QdotRef(7) =Xcd,

QddotRef(7) =Xcdd;,

QRef(8) = Ye;,
Qdo[Ref(8 Ycd;
QddotRef(8) =Ycdd;

% Payload endpoint coordinates: Qx, Qy, Px, Py
Qx = Xc - UcP * cos(ThP);,
Qy = Yc - UcP * sin(ThP),
IN = Xc + (LP - LcP) * cos(ThP);
Py =Yc + (LP - LcP) * sin(ThP);

%% Solve for Arm Angles Required by desired path %%

0/0/ LEFT ARM %%
0/%0/%%% .%%/0%%
% Elbow is left of line from arm base to Q (RQ)
L-Sx = LO * cos(ThO + ThLO);
LSy = LO * sin(ThO + ThLO);
RQ = sqrt((Qx-LSX)A 2+(Qy-LSy)A2); % Length from arm base to Q
Betal =atan2(Qy-LSy,Qx-LSx); % Angle from arm base to RQ
% Law of cosines: cos(A) =(b A2 + CA 2 - aA2)/(2t-c)
% Apply to find angle between RQ and Link L I
Num =LI A2 +RQA2 - L2A2;
Den= 2 *LI * RQ;
Beta2 =acos(NumlDen); % Angle from RQ to Link I
ThL I = (Beta I + Beta2) -(ThO +ThLO); % ThetaL I
% Use law of cosines to find the interior angle at the elbow
Num =LI 1A2 + L2 A2 - RQA2;
Den=2 *L I * L2;
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[Beta3 =acos(NumliDen);,
Ihl-2 =-(pi-lBeta3);,
%YSave for plotting
QRef(2) = Thl, I,
QReI (3) = ThL2,

0/% RIGHT ARM %%

-]Ebow is right of line from arm base (shoulder) to P (wrist) (RP)
RSx = RO * cos(ThO + ThRO),
RSv = RO * sin(ThO + ThRO);,
R11= sqrt((Px-RSx)A 2+(Py-RSv)A2)-, % Length from arm base to 1P
IBetal =atan2(Py-RSv,Px-RSx);. % Angle from arm base to Ril
% Law of cosines: cos(A) =(b A2 + CA 2 _ aA2)/(21hc)
% Apply to find angle betwveen RP and Link R I
Num = RIA2 + RPA 2 - R2 A2,
Den2 *R1 * RP-,
Beta2 =acos(Num/Den), % Angle from 1.ink R I to RP
Beta4 = Beta I - (ThO + ThRO);
ThR I = -(Beta2 - Beta4);,
Num = RIA2 + R2A 2 -RPA 2
Den =2 *SRI *R2;
Beta3 =acos(Num/Den),
ThR2 =pi - Beta3;
% Save for plotting
QRef(4) =ThR I;
QRef(S) =ThR2;

%% Solve for Arm Angle Rates & Accelerations required by desired path %%

%% LEFT ARM %%

% [Qxd; Qyd] = JI llThOd + jH2]*Thd
% Qxd & Qyd are x & y components of point Q inertial velocity.
% Thd = fThL I dot, ThL2dotJ
% H matrices are made from expressing the x & v component-, of Q in
% terms of LO, ThO, ThLO0, L 1, ThLI1, L2, and Tli1,2.
% Qx=LOcos(ThO+ThLO)+L I cos(ThO+ThLO+'I hL I)+L,2*cos(TIhO+...
% ThLO+ThLl+ThL2)
% Qy=LO~sin(ThO+ThLO)+L I sin(ThO+ThLO+ThLlI)+L2*sin(TlhO+...
% ThLO+ThLl+ThL2)
% The differentiation of these equations lead to
% [Qxd;, Qydi = [H Il5 ThOd + [H2]*Thd which can be solved for Thd
Qxd = Xcd + LcP *ThPd 

5 sin(ThP)-,
Qyd = Ycd - UcP *ThPd~ cos(ThP);
H2(1,2) =-L2*sin(ThO+ThLO+ThL l+ThL2);
112(l, 1) = H2(1,2) - LlI sin(ThO+ThLO+ThLI1);
112(2,2) = L2*cos(ThO+ThLO+ThL 1+ThL 2);.
112(2, 1) =H2(2,2) - L I *cos(ThO+ThiJO+Thi. 1):
H 1(1, 1) = H2(I, 1) -LO~sin(ThO+ThLO);
111 (2, 1) = H2(2, 1) + LO~cos(ThO+ThLO);
Thd = inv(H2) * ([Qxd; Qyd] - HlI5 ThOd);
% Angle rates
ThLlId = Tbd(l);
ThL2d = Thd(2),
% Save for plotting
QdotRef(2) =ThL, I d;
QdotRef(3) =ThL2d;
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% Differentiation of lQxd. QydJ = IlHIl1*ThOd + 11l121*'rhd leads to
I% IQxdd: Qyddi = IldotI*Th~d+II IlI*Th~dd + 11 I2dotI1*,hd+1 121*TIhdd
Qxdd = Xcdd + LcP*(ThPdd*sin(ThP) + ThlldA2*cos(IiP))-:
Qvdd =Yedd - LcP*(ThPdd*cos(TFhP) - 'I*iI~dA2*sin(lIhP)):.
I l2dot( 1,2) = -L2*(ThOd+ThL Id+TFhL2d)*cos( 'I'hO+TFhLO+1'hI. I +TIhL2).
I I2dot(1I,I)= l-I2dot( 1,2) L I *(Th7Jd+ hL Id)*cos( TliO+IiLo+TrhtlI):
I I2dot(2,2)= 1L2*(T'hW+ThL Id+ThL2d)*sin( TliO+ThLO.+TIhJ. I hl.2).
I I2dot(2,l)= l-2dot(2,2) -L I*(ThOd+ThL 1d)*sinilho+''IlIhlIl).
II Idot( 1.1)= I 2doL( 1,1) - O*ThOd*cos(lIhO+IIl.0).
I II dot(2. 1) = I I2dot(2. 1) - LO*ThOd*sin(TrhO+lIhi .0).
''lidd = inv(il2)*([Qx(dd, Qyddl-1H2dot*Thd-1I I I dot1I-h~d-II 1 I*ThOdd),
1/ Angle accelerations
[hi. Ildd = Trhdd(I),
ThL,2dd = TIhdd(2);l
QddotRef(2) =T'hL Idd;,
QddotRef(3) = ThL~dd.

%% RIGHT ARM %%

% The development is similar to the left arm
'/a Px=RO*cos(TrhO+'rhRo)+R I*cos('rhO+'rh[()+' I hI )+R2*cos( li'IO+...
% ThRO+ThR 1+ThR2)
% Py=RO*sin(ThO+TbhRO)+RlI*sin(ThO+ThRO+'1 hR]I)+R2*sin(ThO+...
% ThRO+ThRlI+TFhR2)
% I Pxd-, Pydi [H I *ThOd + 1H21*Thd
Pxd = Xed - (LP - LcP) *ThPd *sin(ThP):.

Pvd = Ycd + (LP - LcP) *ThPd *cos(ThP)-.

I 2(1,2) = -R2*sin(ThO+ThRO+ThR I+ThR2)-,
112(1,1) = H2(1,2) -RI*sin(Th0+ThRO+ThRl)-,
112(2,2) = R2cos(ThO+ThRO+ThRI+ThR2);,
112(2, 1) = H 2(2,2) + R I *cs(ThO+ThRO$.T1J I)-,

111(2,1) = H2(2,I) +RO*cos(ThO+ThRO);,
Thd =inv(H2) * ([Pxd, Pyd] - II*ThOd);
% Angle rates
ThR I d = Thd( I);
ThR2d = Thd(2);
% Save for plotting
QdotRef(4) = ThR I d-
QdotRef(5) = ThR2d;,

% [Pxdd; Pydd) = [HIdotj*ThOd+IHI j*ThOdd + 1-2dotJ*Thd+fH2J*Tbdd
Pxdd = Xcdd - (LP - LcP)*(ThPdd*sin(ThP) + ThPdA2*cos(ThP))-:
Pvdd = Ycdd + (LP - LcP)*(ThPdd*cos(ThP) - ThPdA2*sin(ThP)):.
142dot( 1,2) = R2*(ThOd+ThR I d+ThR2d)*cos(ThiO+TrhRO+ThR I +ThR2)-,
U[2dot( 1,1): H-2dot( 1,2) - RI *(ThWd+ThR Id)*cos(TrhO+ ThRO+TrhR I)-.
1 I2dot(2,2) = R2*(ThOd+ThR Id+ThR2d)*sin('I'ho+TbhRO+ThR I +ThIR2)-
112dot(2,I) = H2dot( ,2) -RI *(ThWd+ThR Id)*sin('I'hO+TIhRo+'[hR I);
HlIdot(I,l1) =H2dot(I,I1) - RO*ThOd*cos(ThO+ThRO)-,
H I dot(2, 1) =H2dot(2, 1) - RO*ThOd*sin(ThO+ThRO),
Thdd = inv(H2)*([Pxdd, Pydd1-H2dot*Thd-[14 I dot]*ThOd-[{I I1 ]*Th04d)-,
% Angle accelerations
'rhR Idd = Thdd(l);
ThR2dd = Thdd(2);
QddotRef(4) = ThR I dd;
QddotRef(5) = TbR2dd;

%% Find needed control torques, u %%
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1/ E-OM: M*qddot + G = B*u + A'*Lam
% Constraint liqns: A *qdot = 0
%!/ Solve EOM for qddot leads to
%V qddot = inv(M)*(13*u + A'*Lam - Gi)

%Differentiate Constraint Eqns gives Adot*qIdu + A*qddtt=
%Substitute qddot derived from EOM into dilkerentiated constraint

% eqns and solve for Lam
% L.am = -inv(A*inv(M)*A')*(A*inv(M)*(13*u-( )+Adot*qdot)

'1,Substitute this expression for Lam into origiani FEOM. Collect terms
1/ Into the form MTilda*qddot + GTilda =13'1ilda*u
,.where MTilda =M

1 (/, Tilda = ( + A'*inv(A*inv(M)*A')*( Adot*qdoL-A*invI M )*( )
9, BTilda =(I-A'*inv(A*inv(M)*A')*A*invt(M))*3

% The first five resulting equations apply to the spacecraft centerbody
% and arms. The final three apply to the payload. The matrix form o1f
% the last three equations is
% MPTilda*QPddot + GPTilda = BPTilda*u

%% Matrices %/9/

AngConst = IThLO; ThROJ;
%/-AMatflag = L~
f AMatFiag
I M,G,A,Adot,BI = MatxFix(Ls,Ms,CMsjls,QReF.Qdoti~cf.AngConst).

elIse
I M,G,A,Adot,BJ = Matx(Ls,Ms,CMs,is,QRef.QdotRefAngConst)-.

end

if WvheelFlak,
B37 =[I , 0, 0; 0, 0; 0, 0, 01;

end

% If the cost function is subject to the constraint that the payload
% satisfy the reference motion, then three equations otf motion are used.
% To include the centerbody reference motion, use tour equations from
% the equations of motion.

%% MTilda %%

if EOMFIag 3 % Use only the payload equations
MPTilda = M(6:8,6:8)-,

else
if EOMFlag == 5 % Use the spacecraft equations

MPTilda =M(1: 5,1:5);
else % Use all eight equations

MPTilda = M
end

end

%/0/ GTilda %%

Qdot = QdotRef -
(iTilda = G + A'*inv(A*inv(M)*A')*(Adot*Qdot - A *inv(M)*G);l
if EOMFlag ==3 % Use only the payload equations

GPTilda =GTilda(6:8, 1);
else

156



if EOMFlag ==5 % Use the spacecraft equations
GPTilda =(iTilda(l -.5, 1),

elIse % Use all eight equations

Gnida=('id-
end

%% BTilda %%

I ifilda = (eve(8) - A'*inv(A*inv(M)*A')*A*invi M ))*B:
ilF OMFlag 3 % Use only the payload equations

BPffilda = 3Tilda(6:8,:);,
else

if EOMFlag == 5 % Use the spacecraft equations
BFI'ilda =BTilda( 1:5,:);,

else % Use all eight equations
BI'Tilda = HTilda;

end
end

%% GI&G02 %%

% Use previous expression for Lam and regroup terms into the following
%form A*Lam=KI+K2*u
K I =A'*inv(A*inv(M)*A')*(A*inv(M)*G-Adot*Qdot),
K2 = A*inv(A*inv(M)*A')*A*inv(M)*B;

%/%/ Torques %%

% Torques are calculated to minimize the following cost function:
% J =O.5*tu'*Wu*u + Lain*A*Wc*A'*Lam +,Tr*Wr*TrI
% Subject to the constraint: MP*QPddot + GPTilda - l3PTilda*u = (0

% Combine the constraint into the cost function by multiplying the
% constraint eqn by another Lagrange multiplier. (tam, and adding that
% to the cost function. Take the gradient with respect to u results in
% (Wu+K2'*Wc*K2)*u +K2'*Wc*K - BPTilda'*Gam=0
% Solve for u
% u = inv(Wu+K2'*Wc*K2)*(BPTilda'*Gam - K2'*Wc*K 1)
% Substitute this into the constraint eqn. Solve the result for Gain
% Gain =inv(BPTilda*inv(Wu + K2'*Wc*K2)*TW'Tilda )*(MP*QPddot+

% ~GPTilda+BPTilda*inv(Wu + K2'*Wc*K2)*K2'*Wc*K 1)
% Substitute this expression into the torque equation, u.

Qddot = QddotRef ;

if FOMFlag -3 % Use only the payload equations
QPddot =Qddot(6:8, 1);

else
if EOMFlag 5 % Use the spacecraft equations

QPddot = Qddot(l:5, 1);
else % Use all eight equations

QPddot = Qddot;
end
end

%% PSUEDO-INVERSES 8/%/
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%, To avoid the problems with poorly conditioned matrices. 1,ve used the
% psuedo-inverse rather than the traditional inverse in the next two
% equations.
if PInvFlag

Part I = pinv(Wu + K2'*Wc*K21.
(Oam = pinv(lpTilda*Parti*BPTilda') * (Mil'ilda*QtPddot + (;Iyl'ilda +..

BTfilda*Part I *(K2'*Wc*K I )),
else

Part I inv(Wu + K2'*Wc*K2),
(yam = inv(i3Prilda*Part I*BPTilda') * (MPTilda*0)Pddot + iPlTilda +.

1lfTiIda*Part I *(K2'*Wc*K 1));
end

% Reference Torques
hrques = Part l*(BPTilda'*Gam - K2'*Wc*K I),

1/6 Cost Function, J
.1 = abs(Torques(l));

%Controller Info
Ptl = A'*inv(A*inv(M)*A')
C I = inv(M)*(eye(M) - Pt I *A*inv(M))*B;
C2 = -inv(M)*Ptl*Adot;
C3 = inv(M)*(Ptl *A*inv(M) - eye(M))*G:

"/%%%/0/%%%%%%
%% DEBUG INFO %%
%%%%%%%/0%%%
%% Are constraint equations, A*qdot=o, satisfied?
Aqdot = A*QdotRef;

L. RefMin2

% Filename is 'RefMin2.m'
% Reference Maneuver using cost function
% This routine is used by "MainOpt.m* to find he optimal combination
% of reference trajectory polynomial coefficients.
% Version 2 uses the rate of change of angular momentum to find
% the wheel torque.

function [Joptl,Jopt2] = RefMin2(TLsMs,CMs,ls,BoundC,Wu.Wc.CoefConstMat)

% OUTPUTS:
% Jopt = absolute value of the reaction wheel torque. This is the cost
% function value for purposes of optimizing the reference
% trajectory polynomial coefficients. Joptl will be integrated by
% odemin.m while Jopt2 is the same value but won't be integrated.

% INPUTS:
% T = time (sec)
% Ls = 7x I vector of lengths (m)
% I st element = distance from origin to left arm mount
% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)
% 4th element = payload length
% 5th & 6th elements wrt right arm (from wrist toward shoulder)
% 7th element = distance from right arm mount to origin
% [LO; LI; L2; LP; R2; RI; R01
% Ms = 6x I column vector containing the masses (kg)
% I st element = mass of spacecraft centerbody
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' 2nd & 3rd elements = mass of left arm (upper arm then low~er arm)
o/ 41h & 5th elements =mass of right arm (upper arm then lower ann)
I% 6th element =payload mass

I IMO.ML I-,ML2-;MR1. MR2,MP1
' Ms = 6x I column vector containing center of mass locations

I ILcO;, LcL I , LcL2-. LcR I - LcR2-. Lei'I
'! j Is = 6x I column vector containing the moments at inertias about the

' respective body's center of mass (kg m^2)
I 1st element = inertia of spacecraft centerbodiv

' 2nd & 3rd elements = inertia of leit arm (tipper arm then lower arm)
'yo 4th & 5th elements = inertia of right arm (upper arm then lower arm)
% 6th element = payload inertia

11 ~0- ILL 1L2; IRI1, 1R12. IP I
' IoundC = boundrv conditions for the problem. [he first column

%contains the initial x and y component at points Q & 1)
q/0 respectively, the x component of the right arm base, the
1/1 problem start time, and the simulation stop time. The second
14, column contains the x and y component of points Q & P
% respectively, the x component of the right arm base, the
'Yo stop time for the ideal reference maneuver. and a flag to
'N activate or deactivate the controller. The origin for the

' x and v components is the base of the left arm.
'Wu = 6x6 control torque cost weighting matrix

%/ We = 8x8 constraint cost weighting matrix
'No Coef = (n-2)x I vector of polynomial reference trajectorv coefficients

% in descending order where n is the highest order coefficient
1/o ConstMat = 3x(n-2) matrix of coefficients for reference tra 'jectory*
0/1 displacement (row 1), velocity (row 2) and acceleration (row 3)

%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%

% Lengths (in)
Lo0 = LsMl;
1. 1 = Ls(2);
L.2 = Ls(3);,
L.P = Ls(4);
R2 = LOX5)
R I = Ls(6);
RO = Ls(7);

% Member masses (kg)
MO = Ms(l);
ML I = Ms(2),
ML2 = Ms(3);,
MR I = Ms(4);
MR2 = Ms(5);,
MP = Ms(6);

% Center of mass distances (in)
LcO = CMs(l);
.cL I = CMs(2);

TLcL2 =CMs(3);
ILcR I = CMs(4);
LcR2 = CMs(5);
l~cP = CMs(6); %measured from left end

% MOT 3bout center of mass
10 = ls(l);
11,.1 1s(2);
112 =Is(3);
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I RI = I s(4),
iR2 = ls(5);,
IP =Ils(6)-;

Initial and final locations of third link
Point Q is at Node 3 hjoint between Links 2 & 3)

%V Point P is at Node 4 (joint between Links 3 & 4)
Qxt)= l-oundC( 1,1); QyO =BloundC(1I,2)-.
(Nt) = 3oundC(2, 1), PvO =BoundC(2,2);,
Qxf=13oundC(3,l), Qyf=[3oundC(3.2)-,
P'xl= BoundC(4,I)-, Pvf =BoundC(4,2)-.

l% Arms mount locations wrt spacecraft centerbody coordinate frame (rad)
lhlA) = lBoundC(5, I); , hRO =BoundC(5,2)-,

%) Reference Maneuver Start and Stop Times
TO = RoundC(6, I); Tf =BLoundC(6,2);

ON Constraints Matrix Flag
A MatFlag = BoutndC(8,I)-,

14, Centerbody Reaction Wheel Flag
WheelFlag = BoundC(8,2);

% Centerbody Initial and Final Conditions
TIhot) = BoundC(9, I);
ThOf = BoundC(9,2);,

'Y. Number of equations in the cost function constraint equations
I 'OMFlag =BoundC(IO,I1);

% Psuedo-Inverse Flag
PlnvFlag =BoundC(lO,2);,

%% PRELIMINARY CALCULATIONS %%

R2D = I 8O/pi; % Conversion from radians to degrees

% Total rot.-tion of Payload
TIIPO =atar.2(PyO-QyO,PxO-QxO); % Initial angle of Payload (rad)
ThPf =atan2(Pyf-QyfPxf-Qxf); % Final angle of Payload (rad)
DeIThP? = ThPf - ThPO-, % Total delta angle of Payload (rad)

% Initial and final locations of Payload center of mass
XPO = QxO + ^Px - QxO) * (LcP/LP);
YPO = QyO + (PyO - QyO) * (LcP/LP);
XPf = Qxf + (Pxf - Qxd) * (LcP/LP);
YPf = Qyf + (Pyf -Qyf) * (LcPILP);

Tau = (T-TO) / (Tf-TO);, % Normalize time

% Function Weighting Factors for how the payload will move
% These factors will cause the angular velocity and angular
% acceleration of the payload to be zero at t = 0 and t = tf
% They also permit the payload angle to match its initial
% and final values. These weighting factors, will also apply
% to the translational motion of the payload center of mass.

k = length(CoeO);
for n= I:k
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CtIau(k+ I -n) = Coef(k+ I -n)*rauA(n+2)-;
C laud(k+ I -n) = Coef(k+ I -n)*T'aUA(n+ I)-,
C'I audd(k+ I -n) =Coef(k+ I -n)*TauA(n);,

end
W ConstMat( I.:)*C'rau'.
Wd ConstMat(2,: )*CTaud'-
Wdd =CoristMat(3,; )*C'r'audd'-

% Centerbody angle, angular velocity, angular acceleration
lDclTh() = 'I'hf - ThOO:,
lh() =TlhUO + W *DeIThO-; % Angle (rad).
'Ihod = Wd * IThO / (TI' - TO). % Velocity (rad/sec).
l'hodd = Wdd * DclThO / (Tr - T1'O)A 2 % Acceleration (rad/ SMA 2).
"/, Save for plotting
Qizef( i) = 'rhO-,
QdolRef( I) ='MOd;
QddotRef( I) = ThOdd-,

%V Pay load angle, angular velocity, angular acceleration
ThP = ThPO + W * DeIThP;, % Angle (rad)
'IhPd =Wd * DelchP / (TI' - TO)-. % Velocity' (rad/sec)
Tldd = Wdd * DclThP / (Tf _ TO)A 2; % Acceleration (rad/secA2)
IN1 Save for plotting
QRcf(6) = ThP;,
QdotRef(6) =ThPd;,
QddotRef(6) =ThPdd,

% Pay'vload center of mass position, velocity, and acceleration
Xc = XPO + W * (XPf - XPO);'
Xcd = Wd * (XPf - XPO) / (TI' - TO);
Xcdd =Wdd * (XPf - XPO) / (Tf - TO)A 2;
Yc = YPO +W * (YPf - YPO);'
Ycd =Wd *(YPf - YPO)I/(T -TO);
Ycdd =Wdd * (YPf - YPO) / (TI' - TO)A 2,
% Save for plotting
QRef(7) = Xc;,
QdotReI'(7) Xcd;,
QddotRef(7) =Xd;

QReI'(8) = Yc-
QdotRef(8) Ycd;,
QddotRef(8) =Ycdd;

% Payload endpoint coordinates: Qx, Qy, Px, Py
Qx = Xc - LUP * cos(ThP);,
Qv = Yc - UcP * sin(ThP);
Px = Xc + (LP - LcP) *cosq(ThP);,

P= Yc + (LP - LeP) *sin(ThP);

%% Solve for Arm Angles Required by desired path %%

%/0/ LEFT ARM %%

% Elbow is left of line from arm base to Q (RQ)
LSx = LO *cos(ThO + TbLO);
LSy= LO sin(ThO + ThLO);
RQ = sqrt((Qx-LSx)A2+(Qy-LSy)A2); % Length from arm base to Q
lBetal = atan2(Qy-LSy,Qx-LSx), % Angle from arm base to RQ
% Law of cosines: cos(A) = (b^2 + CA 2 - aA2)/(2bc)
% Apply to find angle between RQ and Link LI1
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Num = 1, 1l^2 + RQA2 - L 2^2,
IXen=2L1I *RQ.,
lBcta2 = acos(NumlDen). % Angle from RQ to L.ink I
Th,) I= (B~eta I+ Beta2) - (fhO + ThLO); % Theta LI
'V I ise law of cosines to lind the interior angle at the elbow
Num = 1, ['^2 + 1,2A2 - RQA2-,
D~en =21*.I * L2,
Beta3 = acos(Numn/Den);,
'h112 = -(pi-Beta3)-;

%VSave tar plotting
QRef(2) =Tbl, I -
QRef(3) =ThL2,

%% RIGHT ARM %%

% Elbow is ight of line from arn base (shoulder) to P (wrist) (RP)
RSx = RO * cos(ThO + ThRO);.
RSv = RO * sin(ThO + ThRO);,
RP = sqrt((Px-RSx)A2)+(Py-RSv)A2); % Length from arm base to P
B~etalI = atan2(Py-RSy,Px-RSx);, % Angle from arm base to RP
%A Law of cosines: cos(A) = (b A2 + CA 2 _ 8A 2)(2bc)
% Apply to find angle between RP and L ink R I
Num R IA 2 + RPA2 - R2 A2-,
Den 2 *RI * RP;,
lBcta2 = acos(Num/Den); % Angle from Link RI to Rl'
lBeta4 = Beta I - (ThO + ThRO);
ThR I = -(Beta2 - Beta4);,
Num = RJA 2 + R2 A2 - RPA 2;
D~en = 2 * RI * R2-,
Reta3 = acos(NumlDen);
ThR2 = pi - Beta3;,
% Save for plotting
QRef(4) =ThR I -
QRef(5) =ThR2;

%% Solve for Arm Angle Rates & Accelerations %%
%% required by desired path %

%% LEIFT ARM %%

% IQxd; Qyd] = 141 *ThOd + tH21*'rhd
% Qxd & Qyd are x & y components of point Q inertial velocity.
% Thd = [ThL I dot-, Thl,2dotJ
% I- matrices are made from expressing the x & y components of Q in
% terms of LO, ThO, ThLO. LI1, ThL 1, L2, and ThL2.
% Qx=LO*cos(ThO+ThLO)+L I *cosgThO+ThIO+ThI I )+L2*cos(T'hO+...

ThLO+ThL I+ThL2)
% Qy=LO*sin(ThO+ThLO)+Ll1*sin(ThO+ThLO+ThLlI)+1,2*sjn(ThO+...

ThLO+T'hL I+ThL2)
% The differentiation of these equations lead to
% tQxd; Qyd] = H I J*Th~d + [H2]*Thd which can be solved for Thd
Qxd = Xcd + UcP *ThPd *sin(ThP);

Qyd = Yed - UcP *ThPd *cos(ThP);

112(1,2) = L2*sin(ThO+ThLO+ThL l+ThL2);
112(l, 1) =H2(1,2) - L I*sin(ThO+ThLO+ThL 1),
112(2,2)= L2*cos(ThO+ThLO+ThLI+ThL2);
H-2(2, 1) =H2(2,2) + L I *cos(ThO+ThL O+ThL I);
11(1,1) = H2(l,l) -LO*sin(ThO+ThLO);
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111(2.1) = 112(2,1) +I.Ocos4 Iho+ThiLO).
I'ld = invti-12) *([Qxd;, Qyd I - III *Th0d),
"/, Angle rates
Tli Id = Thd( I);
I'hl.2d = Thd(2);
'!, Save [or plotting
QdotRef(2) =TIhL I d.
Qdotkel'(3) = 'Ihl-2d.

IN Differentiation of [Qxd-. Qvdj = III I111h~d + 11 21*'d leads to
14 IQxdd-. Qyddl = jHlIdot *'hOd+I1Il J*ThOdd + II I2dotlIThd+Il 1121**Thdd
Qxdd =Xcdxd + fLcP*(Thddsin(TIhP) +ThiPdA2*cos- lhP))
Qydd, = Yedd - LcP*(Trhldd*co-s(l'hP) -TIi'dA2*sin(ThP)).
I I2dot 1.2) = -L2*(ThOd+T[hl. ld+T*hI.2d)*cos IhO)+'IIul.(+J'hJ. I +")111 2).

I I2dot(2,2) = 1L2*(ThWd+ThLlId+ThL2d)*sjn('lho+J'hlO+1Ihl I +I'h1,2).
I I2dot( 2,1)= H-2dot(2,2) -LI *(Th~ti+ThL ld)*sin( ThO+T'hl.O+Ihl. IX
llldot( 1,1)= H2dot( 1,1) - IAThOd*cos(Ii'I''hl.O);,
llldot(2.l) H2dot(2I) - LO*ThOd*sin(TrhO +Thl.O).

11 Angle accelerations
Vhl. Idd = Thdd(I),
Vhl. 2dd =Thdd(2);,
Qddotkef(2) = Thl, Idd,
QddotRef(3) = rhb2dd;

%% RIGHT ARM %%

% The development is similar to the left arm
% Px=~RO*cos(ThO+ThRO)+R 1 cos(ThO+ThRO+TFhR I)+R2co{ThO+...

TbRO+ThR I+ThR2)
% Pv=RO*sin(ThO+ThRO)+RlI*sin(ThQ+TiR().+ThR I)+R2*sin( ThiO+..

TrhRO+TFhR I+ThR2)
%~/ jPxd;, Pydi [H IJ*ThOd + jl-12j*Thd
Pxd = Xcd - (LP - UcP) * ThPd * sin(ThP)-,
Pvd = Ycd + (LP - LcP) * ThPd * cos(ThP);,
112(1,2) = -R2*sin(ThO+TbRO+ThRI+ThR2)-.
112(1,1)= H2(I,2)- RI*sin(TbO+ThRO+TbRIXl-
112(2,2) = R2*cos(ThO+ThRO+ThRI+ThR2).
112(2,1) = H2(2,2) +Ri cos(ThO+ThR04- I'iR I).

111(2,1) = H2(2, I) +ROcos(ThO+ThRO).
Thd = inv(H-2) * ([Pxd; Pyd] - H I*ThOd);,
% Angle rates
ThR Id = Thd(I)-,
TFhR2d = Thd(2),
% Save for plotting
QdotRef(4) =ThR I d-
QdotRef(5) = ThR2d;

% tPxdd; Pyddi = fH Idot14IThOd+[H1 I*Thodd + if I2dotJ*Thd+l1112J*Thdd
Pxdd =Xcdd -(LP - LcP)*(ThPdd*sin(ThP) + ThPdA2*cos(ThP));,
Pvdd =Yedd + (LP - LcP)*(ThPdd*cos(ThP) - ThPdA2*siri(ThP)),
I l2dot( 1,2) = -R2*(TbOd+TbR ld+ThR2d)*cos(ThO+ThRO+ThR I +ThR2),
l-l2dot( 1,1) = H2dot( 1,2) -RI *(Th~d+ThR Id)*cos(ThO+ThRO+ThR I)
I I2dot(2,2) = -R2*(ThOd+ThR Id+ThR2d*-.in(ThO+ThRO+ThR I+ThR2);
I I2dot(2, 1) = H2dot(2,2) - RI *('rh~d+ThR I d)*sinC FhO+ThRO+ThR 1 ).
HI dot( 1,D)= H2dot( 1,1) -RO*ThOd*cos('11O-fi'hROX-
H I dot(2, 1) = H2dot(2, 1) - RO*ThOd*sin(TIhO+TIhRO)-,
Thdd =inv(H2)*([Pxdd; PyddI-H2dot*Thd-IH I dot] *ThOd'[41 I JThOdd);,
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Angle accelerations
IlhR Idd = TFhdd(i ),
[l]R2dd ='Fhdd(2),
()ddotRef(4) = 'IhR Idd.
Q ddotRet(5) = I'hR2dd.

Find:1  needed control wheel torque %%

Q =QR-l':
(.dot =Q lotRel'
oddot QddotRef'

IlIkI. I ldkotsl = AngMo2(Ls,Ms,CMs.Is,Q,Qdo.t.Qddot).

SCost Function, Jopt
Wheel torque is the change in total angular momentumn

'- .optl I s integrated while Jopt 2 is not
Jopt I = abs(Hdots7)),
.lopt2 = Jopt 1,
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